No Arabic abstract
After the introduction of the ionization-injection scheme in Laser Wake Field Acceleration and of related high-quality electron beam generation methods as two-color or the Resonant Multi Pulse Ionization injection, the theory of thermal emittance by C. Schroeder et al, has been used to predict the beam normalised emittance obtainable with those schemes. In this manuscript we recast and extend such a theory, including both higher order terms in the polinomial laser field expansion and non polinomial corrections due to the onset of saturation effects in a single cycle. Also, a very accurate model for predicting the cycle-averaged $3D$ momentum distribution of the extracted electrons, including saturation and multi-process events, is proposed and tested. We show that our theory is very accurate for the selected processes of Kr$^{8^+rightarrow10^+}$ and Ar$^{8^+rightarrow10^+}$, resulting in a a maximum error below $1%$ even in deep saturation regime. This highly accurate prediction of the beam phase-space can be implemented e.g., in laser-envelope Particle in Cell (PIC) or hybrid PIC-fluid codes, to correctly mimic the cycle-averaged momentum distribution without the need of resolving the intra-cycle dynamics. Finally, we introduce further spatial averaging with Gaussian longitudinal and transverse laser profiles, obtaining expressions for the whole-beam emittance that fits with Monte Carlo simulations in a saturated regime, too.
We propose a new method for self-injection of high-quality electron bunches in the plasma wakefield structure in the blowout regime utilizing a flying focus produced by a drive-beam with an energy-chirp. In a flying focus the speed of the density centroid of the drive bunch can be superluminal or subluminal by utilizing the chromatic dependence of the focusing optics. We first derive the focal velocity and the characteristic length of the focal spot in terms of the focal length and an energy chirp. We then demonstrate using multi-dimensional particle-in-cell simulations that a wake driven by a superluminally propagating flying focus of an electron beam can generate GeV-level electron bunches with ultra-low normalized slice emittance ($sim$30 nm rad), high current ($sim$ 17 kA), low slice energy-spread ($sim$0.1%) and therefore high normalized brightness ($>10^{19}$ A/rad$^2$/m$^2$) in a plasma of density $sim10^{19}$ cm$^{-3}$. The injection process is highly controllable and tunable by changing the focal velocity and shaping the drive beam current. Near-term experiments using the new FACET II beam could potentially produce beams with brightness exceeding $10^{20}$ A/rad$^2$/m$^2$.
The acceleration of super-heavy ions (SHIs) from plasmas driven by ultrashort (tens of femtoseconds) laser pulses is a challenging topic waiting for breakthrough. The detecting and controlling of the ionization process, and the adoption of the optimal acceleration scheme are crucial for the generation of highly energetic SHIs. Here, we report the experimental results on the generation of deeply ionized super-heavy ions (Au) with unprecedented energy of 1.2 GeV utilizing ultrashort laser pulses (22 fs) at the intensity of 10^22 W/cm2. A novel self-calibrated diagnostic method was developed to acquire the absolute energy spectra and charge state distributions of Au ions abundant at the charge state of 51+ and reaching up to 61+. The measured charge state distributions supported by 2D particle-in-cell simulations serves as an additional tool to inspect the ionization dynamics associated with SHI acceleration, revealing that the laser intensity is the crucial parameter for the acceleration of Au ions over the pulse duration. The use of double-layer targets results in a prolongation of the acceleration time without sacrificing the strength of acceleration field, which is highly favorable for the generation of high-energy super heavy ions.
A method of generating spin polarized proton beams from a gas jet by using a multi-petawatt laser is put forward. With currently available techniques of producing pre-polarized monatomic gases from photodissociated hydrogen halide molecules and petawatt lasers, proton beams with energy ~ 50 MeV and ~ 80 % polarization are proved to be obtained. Two-stage acceleration and spin dynamics of protons are investigated theoretically and by means of fully self-consistent three dimensional particle-in-cell simulations. Our results predict the dependence of the beam polarization on the intensity of the driving laser pulse. Generation of bright energetic polarized proton beams would open a domain of polarization studies with laser driven accelerators, and have potential application to enable effective detection in explorations of quantum chromodynamics.
The ion beam bunching in a cascaded target normal sheath acceleration is investigated by theoretical analysis and particle-in-cell simulations. It is found that a proton beam can be accelerated and bunched simultaneously by injecting it into the rising sheath field at the rear side of a laser-irradiated foil target. In the rising sheath field, the ion phase rotation may take place since the back-end protons of the beam feels a stronger field than the front-end protons. Consequently, the injected proton beam can be compressed in the longitudinal direction. At last, the vital role of the ion beam bunching is illustrated by the integrated simulations of two successive stages in a cascaded acceleration.
Laser-plasma technology promises a drastic reduction of the size of high energy electron accelerators. It could make free electron lasers available to a broad scientific community, and push further the limits of electron accelerators for high energy physics. Furthermore the unique femtosecond nature of the source makes it a promising tool for the study of ultra-fast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams, mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens, in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line.