Do you want to publish a course? Click here

Spin polarized proton beam generation from gas-jet targets by intense laser pulses

86   0   0.0 ( 0 )
 Added by Meng Wen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A method of generating spin polarized proton beams from a gas jet by using a multi-petawatt laser is put forward. With currently available techniques of producing pre-polarized monatomic gases from photodissociated hydrogen halide molecules and petawatt lasers, proton beams with energy ~ 50 MeV and ~ 80 % polarization are proved to be obtained. Two-stage acceleration and spin dynamics of protons are investigated theoretically and by means of fully self-consistent three dimensional particle-in-cell simulations. Our results predict the dependence of the beam polarization on the intensity of the driving laser pulse. Generation of bright energetic polarized proton beams would open a domain of polarization studies with laser driven accelerators, and have potential application to enable effective detection in explorations of quantum chromodynamics.



rate research

Read More

We propose a scheme to overcome the great challenge of polarization loss in spin-polarized ion acceleration. When a petawatt laser pulse penetrates through a compound plasma target consisting of a double layer slab and prepolarized hydrogen halide gas, a strong forward moving quasistatic longitudinal electric field is constructed by the self-generated laser-driven plasma. This field with a varying drift velocity efficiently boosts the prepolarized protons via a two-stage coherent acceleration process. Its merit is not only achieving a highly energetic beam but also eliminating the undesired polarization loss of the accelerated protons. We study the proton dynamics via Hamiltonian analyses, specifically deriving the threshold of triggering the two-stage coherent acceleration. To confirm the theoretical predictions, we perform three-dimensional PIC simulations, where unprecedented proton beams with energy approximating half GeV and polarization ratio $sim$ 94% are obtained.
Two dimensional particle-in-cell simulations characterizing the interaction of ultraintense short pulse lasers in the range 10^{18} leq I leq 10^{20} W/cm^{2} with converging target geometries are presented. Seeking to examine intensity amplification in high-power laser systems, where focal spots are typically non-diffraction limited, we describe key dynamical features as the injected laser intensity and convergence angle of the target are systematically varied. We find that laser pulses are focused down to a wavelength with the peak intensity amplified by an order of magnitude beyond its vacuum value, and develop a simple model for how the peak location moves back towards the injection plane over time. This performance is sustained over hundreds of femtoseconds and scales to laser intensities beyond 10^{20} W/cm^{2} at 1 mu m wavelength.
86 - Suo Tang , Naveen Kumar , 2016
Plasma high harmonics generation from an extremely intense short-pulse laser is explored by including the effects of ion motion, electron-ion collisions and radiation reaction force in the plasma dynamics. The laser radiation pressure induces plasma ion motion through the hole-boring effect resulting into the frequency shifting and widening of the harmonic spectra. Classical radiation reaction force slightly mitigates the frequency broadening caused by the ion motion. Based on the results and physical considerations, parameter maps highlighting optimum regions for generating a single intense attosecond pulse and coherent XUV radiations are presented.
Generation of ultrarelativistic polarized positrons during interaction of an ultrarelativistic electron beam with a counterpropagating two-color petawatt laser pulse is investigated theoretically. Our Monte Carlo simulation based on a semi-classical model, incorporates photon emissions and pair productions, using spin-resolved quantum probabilities in the local constant field approximation, and describes the polarization of electrons and positrons for the pair production and photon emission processes, as well as the classical spin precession in-between. The main reason of the polarization is shown to be the spin-asymmetry of the pair production process in strong external fields, combined with the asymmetry of the two-color laser field. Employing a feasible scenario, we show that highly polarized positron beams, with a polarization degree of $zetaapprox 60%$, can be produced in a femtosecond time scale, with a small angular divergence, $sim 74$ mrad, and high density $sim 10^{14}$ cm$^{-3}$. The laser-driven positron source, along with laser wakefield acceleration, may pave the way to small scale facilities for high energy physics studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا