Do you want to publish a course? Click here

Smoothing Dialogue States for Open Conversational Machine Reading

120   0   0.0 ( 0 )
 Added by Zhuosheng Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Conversational machine reading (CMR) requires machines to communicate with humans through multi-turn interactions between two salient dialogue states of decision making and question generation processes. In open CMR settings, as the more realistic scenario, the retrieved background knowledge would be noisy, which results in severe challenges in the information transmission. Existing studies commonly train independent or pipeline systems for the two subtasks. However, those methods are trivial by using hard-label decisions to activate question generation, which eventually hinders the model performance. In this work, we propose an effective gating strategy by smoothing the two dialogue states in only one decoder and bridge decision making and question generation to provide a richer dialogue state reference. Experiments on the OR-ShARC dataset show the effectiveness of our method, which achieves new state-of-the-art results.



rate research

Read More

In conversational machine reading, systems need to interpret natural language rules, answer high-level questions such as May I qualify for VA health care benefits?, and ask follow-up clarification questions whose answer is necessary to answer the original question. However, existing works assume the rule text is provided for each user question, which neglects the essential retrieval step in real scenarios. In this work, we propose and investigate an open-retrieval setting of conversational machine reading. In the open-retrieval setting, the relevant rule texts are unknown so that a system needs to retrieve question-relevant evidence from a collection of rule texts, and answer users high-level questions according to multiple retrieved rule texts in a conversational manner. We propose MUDERN, a Multi-passage Discourse-aware Entailment Reasoning Network which extracts conditions in the rule texts through discourse segmentation, conducts multi-passage entailment reasoning to answer user questions directly, or asks clarification follow-up questions to inquiry more information. On our created OR-ShARC dataset, MUDERN achieves the state-of-the-art performance, outperforming existing single-passage conversational machine reading models as well as a new multi-passage conversational machine reading baseline by a large margin. In addition, we conduct in-depth analyses to provide new insights into this new setting and our model.
Document interpretation and dialog understanding are the two major challenges for conversational machine reading. In this work, we propose Discern, a discourse-aware entailment reasoning network to strengthen the connection and enhance the understanding for both document and dialog. Specifically, we split the document into clause-like elementary discourse units (EDU) using a pre-trained discourse segmentation model, and we train our model in a weakly-supervised manner to predict whether each EDU is entailed by the user feedback in a conversation. Based on the learned EDU and entailment representations, we either reply to the user our final decision yes/no/irrelevant of the initial question, or generate a follow-up question to inquiry more information. Our experiments on the ShARC benchmark (blind, held-out test set) show that Discern achieves state-of-the-art results of 78.3% macro-averaged accuracy on decision making and 64.0 BLEU1 on follow-up question generation. Code and models are released at https://github.com/Yifan-Gao/Discern.
We introduce dodecaDialogue: a set of 12 tasks that measures if a conversational agent can communicate engagingly with personality and empathy, ask questions, answer questions by utilizing knowledge resources, discuss topics and situations, and perceive and converse about images. By multi-tasking on such a broad large-scale set of data, we hope to both move towards and measure progress in producing a single unified agent that can perceive, reason and converse with humans in an open-domain setting. We show that such multi-tasking improves over a BERT pre-trained baseline, largely due to multi-tasking with very large dialogue datasets in a similar domain, and that the multi-tasking in general provides gains to both text and image-based tasks using several metrics in both the fine-tune and task transfer settings. We obtain state-of-the-art results on many of the tasks, providing a strong baseline for this challenge.
We investigate a framework for machine reading, inspired by real world information-seeking problems, where a meta question answering system interacts with a black box environment. The environment encapsulates a competitive machine reader based on BERT, providing candidate answers to questions, and possibly some context. To validate the realism of our formulation, we ask humans to play the role of a meta-answerer. With just a small snippet of text around an answer, humans can outperform the machine reader, improving recall. Similarly, a simple machine meta-answerer outperforms the environment, improving both precision and recall on the Natural Questions dataset. The system relies on joint training of answer scoring and the selection of conditioning information.
122 - Jiaqi Li , Ming Liu , Zihao Zheng 2021
Multiparty Dialogue Machine Reading Comprehension (MRC) differs from traditional MRC as models must handle the complex dialogue discourse structure, previously unconsidered in traditional MRC. To fully exploit such discourse structure in multiparty dialogue, we present a discourse-aware dialogue graph neural network, DADgraph, which explicitly constructs the dialogue graph using discourse dependency links and discourse relations. To validate our model, we perform experiments on the Molweni corpus, a large-scale MRC dataset built over multiparty dialogue annotated with discourse structure. Experiments on Molweni show that our discourse-aware model achieves statistically significant improvements compared against strong neural network MRC baselines.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا