No Arabic abstract
Document interpretation and dialog understanding are the two major challenges for conversational machine reading. In this work, we propose Discern, a discourse-aware entailment reasoning network to strengthen the connection and enhance the understanding for both document and dialog. Specifically, we split the document into clause-like elementary discourse units (EDU) using a pre-trained discourse segmentation model, and we train our model in a weakly-supervised manner to predict whether each EDU is entailed by the user feedback in a conversation. Based on the learned EDU and entailment representations, we either reply to the user our final decision yes/no/irrelevant of the initial question, or generate a follow-up question to inquiry more information. Our experiments on the ShARC benchmark (blind, held-out test set) show that Discern achieves state-of-the-art results of 78.3% macro-averaged accuracy on decision making and 64.0 BLEU1 on follow-up question generation. Code and models are released at https://github.com/Yifan-Gao/Discern.
In conversational machine reading, systems need to interpret natural language rules, answer high-level questions such as May I qualify for VA health care benefits?, and ask follow-up clarification questions whose answer is necessary to answer the original question. However, existing works assume the rule text is provided for each user question, which neglects the essential retrieval step in real scenarios. In this work, we propose and investigate an open-retrieval setting of conversational machine reading. In the open-retrieval setting, the relevant rule texts are unknown so that a system needs to retrieve question-relevant evidence from a collection of rule texts, and answer users high-level questions according to multiple retrieved rule texts in a conversational manner. We propose MUDERN, a Multi-passage Discourse-aware Entailment Reasoning Network which extracts conditions in the rule texts through discourse segmentation, conducts multi-passage entailment reasoning to answer user questions directly, or asks clarification follow-up questions to inquiry more information. On our created OR-ShARC dataset, MUDERN achieves the state-of-the-art performance, outperforming existing single-passage conversational machine reading models as well as a new multi-passage conversational machine reading baseline by a large margin. In addition, we conduct in-depth analyses to provide new insights into this new setting and our model.
Recent QA with logical reasoning questions requires passage-level relations among the sentences. However, current approaches still focus on sentence-level relations interacting among tokens. In this work, we explore aggregating passage-level clues for solving logical reasoning QA by using discourse-based information. We propose a discourse-aware graph network (DAGN) that reasons relying on the discourse structure of the texts. The model encodes discourse information as a graph with elementary discourse units (EDUs) and discourse relations, and learns the discourse-aware features via a graph network for downstream QA tasks. Experiments are conducted on two logical reasoning QA datasets, ReClor and LogiQA, and our proposed DAGN achieves competitive results. The source code is available at https://github.com/Eleanor-H/DAGN.
Multiparty Dialogue Machine Reading Comprehension (MRC) differs from traditional MRC as models must handle the complex dialogue discourse structure, previously unconsidered in traditional MRC. To fully exploit such discourse structure in multiparty dialogue, we present a discourse-aware dialogue graph neural network, DADgraph, which explicitly constructs the dialogue graph using discourse dependency links and discourse relations. To validate our model, we perform experiments on the Molweni corpus, a large-scale MRC dataset built over multiparty dialogue annotated with discourse structure. Experiments on Molweni show that our discourse-aware model achieves statistically significant improvements compared against strong neural network MRC baselines.
Conversational machine reading (CMR) requires machines to communicate with humans through multi-turn interactions between two salient dialogue states of decision making and question generation processes. In open CMR settings, as the more realistic scenario, the retrieved background knowledge would be noisy, which results in severe challenges in the information transmission. Existing studies commonly train independent or pipeline systems for the two subtasks. However, those methods are trivial by using hard-label decisions to activate question generation, which eventually hinders the model performance. In this work, we propose an effective gating strategy by smoothing the two dialogue states in only one decoder and bridge decision making and question generation to provide a richer dialogue state reference. Experiments on the OR-ShARC dataset show the effectiveness of our method, which achieves new state-of-the-art results.
The goal of conversational machine reading is to answer user questions given a knowledge base text which may require asking clarification questions. Existing approaches are limited in their decision making due to struggles in extracting question-related rules and reasoning about them. In this paper, we present a new framework of conversational machine reading that comprises a novel Explicit Memory Tracker (EMT) to track whether conditions listed in the rule text have already been satisfied to make a decision. Moreover, our framework generates clarification questions by adopting a coarse-to-fine reasoning strategy, utilizing sentence-level entailment scores to weight token-level distributions. On the ShARC benchmark (blind, held-out) testset, EMT achieves new state-of-the-art results of 74.6% micro-averaged decision accuracy and 49.5 BLEU4. We also show that EMT is more interpretable by visualizing the entailment-oriented reasoning process as the conversation flows. Code and models are released at https://github.com/Yifan-Gao/explicit_memory_tracker.