Do you want to publish a course? Click here

Sparse Spatial Attention Network for Semantic Segmentation

128   0   0.0 ( 0 )
 Added by Mengyu Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The spatial attention mechanism captures long-range dependencies by aggregating global contextual information to each query location, which is beneficial for semantic segmentation. In this paper, we present a sparse spatial attention network (SSANet) to improve the efficiency of the spatial attention mechanism without sacrificing the performance. Specifically, a sparse non-local (SNL) block is proposed to sample a subset of key and value elements for each query element to capture long-range relations adaptively and generate a sparse affinity matrix to aggregate contextual information efficiently. Experimental results show that the proposed approach outperforms other context aggregation methods and achieves state-of-the-art performance on the Cityscapes, PASCAL Context and ADE20K datasets.



rate research

Read More

In this paper, we present a so-called interlaced sparse self-attention approach to improve the efficiency of the emph{self-attention} mechanism for semantic segmentation. The main idea is that we factorize the dense affinity matrix as the product of two sparse affinity matrices. There are two successive attention modules each estimating a sparse affinity matrix. The first attention module is used to estimate the affinities within a subset of positions that have long spatial interval distances and the second attention module is used to estimate the affinities within a subset of positions that have short spatial interval distances. These two attention modules are designed so that each position is able to receive the information from all the other positions. In contrast to the original self-attention module, our approach decreases the computation and memory complexity substantially especially when processing high-resolution feature maps. We empirically verify the effectiveness of our approach on six challenging semantic segmentation benchmarks.
332 - Ye Huang , Di Kang , Wenjing Jia 2021
Spatial and channel attentions, modelling the semantic interdependencies in spatial and channel dimensions respectively, have recently been widely used for semantic segmentation. However, computing spatial and channel attentions separately sometimes causes errors, especially for those difficult cases. In this paper, we propose Channelized Axial Attention (CAA) to seamlessly integrate channel attention and spatial attention into a single operation with negligible computation overhead. Specifically, we break down the dot-product operation of the spatial attention into two parts and insert channel relation in between, allowing for independently optimized channel attention on each spatial location. We further develop grouped vectorization, which allows our model to run with very little memory consumption without slowing down the running speed. Comparative experiments conducted on multiple benchmark datasets, including Cityscapes, PASCAL Context, and COCO-Stuff, demonstrate that our CAA outperforms many state-of-the-art segmentation models (including dual attention) on all tested datasets.
360 - Ran Cheng , Ryan Razani , Yuan Ren 2021
Semantic Segmentation is a crucial component in the perception systems of many applications, such as robotics and autonomous driving that rely on accurate environmental perception and understanding. In literature, several approaches are introduced to attempt LiDAR semantic segmentation task, such as projection-based (range-view or birds-eye-view), and voxel-based approaches. However, they either abandon the valuable 3D topology and geometric relations and suffer from information loss introduced in the projection process or are inefficient. Therefore, there is a need for accurate models capable of processing the 3D driving-scene point cloud in 3D space. In this paper, we propose S3Net, a novel convolutional neural network for LiDAR point cloud semantic segmentation. It adopts an encoder-decoder backbone that consists of Sparse Intra-channel Attention Module (SIntraAM), and Sparse Inter-channel Attention Module (SInterAM) to emphasize the fine details of both within each feature map and among nearby feature maps. To extract the global contexts in deeper layers, we introduce Sparse Residual Tower based upon sparse convolution that suits varying sparsity of LiDAR point cloud. In addition, geo-aware anisotrophic loss is leveraged to emphasize the semantic boundaries and penalize the noise within each predicted regions, leading to a robust prediction. Our experimental results show that the proposed method leads to a large improvement (12%) compared to its baseline counterpart (MinkNet42 cite{choy20194d}) on SemanticKITTI cite{DBLP:conf/iccv/BehleyGMQBSG19} test set and achieves state-of-the-art mIoU accuracy of semantic segmentation approaches.
104 - Haifeng Li , Kaijian Qiu , Li Chen 2019
High-resolution remote sensing images (HRRSIs) contain substantial ground object information, such as texture, shape, and spatial location. Semantic segmentation, which is an important task for element extraction, has been widely used in processing mass HRRSIs. However, HRRSIs often exhibit large intraclass variance and small interclass variance due to the diversity and complexity of ground objects, thereby bringing great challenges to a semantic segmentation task. In this paper, we propose a new end-to-end semantic segmentation network, which integrates lightweight spatial and channel attention modules that can refine features adaptively. We compare our method with several classic methods on the ISPRS Vaihingen and Potsdam datasets. Experimental results show that our method can achieve better semantic segmentation results. The source codes are available at https://github.com/lehaifeng/SCAttNet.
185 - Ruigang Niu , Xian Sun , Yu Tian 2020
Semantic segmentation in very high resolution (VHR) aerial images is one of the most challenging tasks in remote sensing image understanding. Most of the current approaches are based on deep convolutional neural networks (DCNNs). However, standard convolution with local receptive fields fails in modeling global dependencies. Prior researches have indicated that attention-based methods can capture long-range dependencies and further reconstruct the feature maps for better representation. Nevertheless, limited by the mere perspective of spacial and channel attention and huge computation complexity of self-attention mechanism, it is unlikely to model the effective semantic interdependencies between each pixel-pair of remote sensing data of complex spectra. In this work, we propose a novel attention-based framework named Hybrid Multiple Attention Network (HMANet) to adaptively capture global correlations from the perspective of space, channel and category in a more effective and efficient manner. Concretely, a class augmented attention (CAA) module embedded with a class channel attention (CCA) module can be used to compute category-based correlation and recalibrate the class-level information. Additionally, we introduce a simple yet effective region shuffle attention (RSA) module to reduce feature redundant and improve the efficiency of self-attention mechanism via region-wise representations. Extensive experimental results on the ISPRS Vaihingen and Potsdam benchmark demonstrate the effectiveness and efficiency of our HMANet over other state-of-the-art methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا