No Arabic abstract
With the rapid development of railways, especially high-speed railways, there is an increasingly urgent demand for new wireless communication system for railways. Taking the mature 5G technology as an opportunity, 5G-railways (5G-R) have been widely regarded as a solution to meet the diversified demands of railway wireless communications. For the design, deployment and improvement of 5G-R networks, radio communication scenario classification plays an important role, affecting channel modeling and system performance evaluation. In this paper, a standardized radio communication scenario classification, including 18 scenarios, is proposed for 5G-R. This paper analyzes the differences of 5G-R scenarios compared with the traditional cellular networks and GSM-railways, according to 5G-R requirements and the unique physical environment and propagation characteristics. The proposed standardized scenario classification helps deepen the research of 5G-R and promote the development and application of the existing advanced technologies in railways.
Providing high-capacity radio connectivity for high-speed trains (HSTs) is one of the most important use cases of emerging 5G New Radio (NR) networks. In this article, we show that 5G NR technology can also facilitate high-accuracy continuous localization and tracking of HSTs. Furthermore, we describe and demonstrate how the NR network can utilize the continuous location information for efficient beam-management and beamforming, as well as for downlink Doppler precompensation in the single-frequency network context. Additionally, with particular focus on millimeter wave networks, novel concepts for low-latency intercarrier interference (ICI) estimation and compensation, due to residual Doppler and oscillator phase noise, are described and demonstrated. The provided numerical results at 30 GHz operating band show that sub-meter positioning and sub-degree beam-direction accuracies can be obtained with very high probabilities in the order of 95-99%. The results also show that the described Doppler precompensation and ICI estimation and cancellation methods substantially improve the throughput of the single-frequency HST network.
5G is regarded as a revolutionary mobile network, which is expected to satisfy a vast number of novel services, ranging from remote health care to smart cities. However, heterogeneous Quality of Service (QoS) requirements of different services and limited spectrum make the radio resource allocation a challenging problem in 5G. In this paper, we propose a multi-agent reinforcement learning (MARL) method for radio resource slicing in 5G. We model each slice as an intelligent agent that competes for limited radio resources, and the correlated Q-learning is applied for inter-slice resource block (RB) allocation. The proposed correlated Q-learning based interslice RB allocation (COQRA) scheme is compared with Nash Q-learning (NQL), Latency-Reliability-Throughput Q-learning (LRTQ) methods, and the priority proportional fairness (PPF) algorithm. Our simulation results show that the proposed COQRA achieves 32.4% lower latency and 6.3% higher throughput when compared with LRTQ, and 5.8% lower latency and 5.9% higher throughput than NQL. Significantly higher throughput and lower packet drop rate (PDR) is observed in comparison to PPF.
One of the ways of achieving improved capacity in mobile cellular networks is via network densification. Even though densification increases the capacity of the network, it also leads to increased energy consumption which can be curbed by dynamically switching off some base stations (BSs) during periods of low traffic. However, dynamic cell switching has the challenge of spectrum under-utilizationas the spectrum originally occupied by the BSs that are turned off remains dormant. This dormant spectrum can be leased by the primary network (PN) operators, who hold the license, to the secondary network (SN) operators who cannot afford to purchase the spectrum license. Thus enabling the PN to gain additional revenue from spectrum leasing as well as from electricity cost savings due to reduced energy consumption. Therefore, in this work, we propose a cell switching and spectrum leasing framework based on simulated annealing (SA) algorithm to maximize the revenue of the PN while respecting the quality-of-service constraints. The performance evaluation reveals that the proposed method is very close to optimal exhaustive search method with a significant reduction in the computation complexity.
The concept of intelligent reflecting surfaces (IRSs) is considered as a promising technology for increasing the efficiency of mobile wireless networks. This is achieved by employing a vast amount of low-cost individually adjustable passive reflect elements, that are able to apply changes to the reflected signal. To this end, the IRS makes the environment realtime controllable and can be adjusted to significantly increase the received signal quality at the users by passive beamsteering. However, the changes to the reflected signals have an effect on all users near the IRS, which makes it impossible to optimize the changes to positively influence every transmission, affected by the reflections. This results in some users not only experiencing better signal quality, but also an increase in received interference. To mitigate this negative side effect of the IRS, this paper utilizes the rate splitting (RS) technique, which enables the mitigation of interference within the network in such a way that it also mitigates the increased interference caused by the IRS. To investigate the effects on the overall power savings, that can be achieved by combining both techniques, we minimize the required transmit power, needed to satisfy per-user quality-of-service (QoS) constraints. Numerical results show the improved power savings, that can be gained by utilizing the IRS and the RS technique simultaneously. In fact, the concurrent use of both techniques yields power savings, which are beyond the cumulative power savings of using each technique separately.
Ultra-dense deployments in 5G, the next generation of cellular networks, are an alternative to provide ultra-high throughput by bringing the users closer to the base stations. On the other hand, 5G deployments must not incur a large increase in energy consumption in order to keep them cost-effective and most importantly to reduce the carbon footprint of cellular networks. We propose a reinforcement learning cell switching algorithm, to minimize the energy consumption in ultra-dense deployments without compromising the quality of service (QoS) experienced by the users. In this regard, the proposed algorithm can intelligently learn which small cells (SCs) to turn off at any given time based on the traffic load of the SCs and the macro cell. To validate the idea, we used the open call detail record (CDR) data set from the city of Milan, Italy, and tested our algorithm against typical operational benchmark solutions. With the obtained results, we demonstrate exactly when and how the proposed algorithm can provide energy savings, and moreover how this happens without reducing QoS of users. Most importantly, we show that our solution has a very similar performance to the exhaustive search, with the advantage of being scalable and less complex.