Do you want to publish a course? Click here

Numerical Study on Beam-based Alignment of SXFEL Undulator Lattice

146   0   0.0 ( 0 )
 Added by Liang Xu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The undulator line of the Shanghai soft X-ray Free-electron Laser facility (SXFEL) has very tight tolerances on the straightness of the electron beam trajectory. However, the beam trajectory cannot meet the lasing requirements due to the influence of beam position, launch angle and quadrupole offsets. Traditional mechanical alignment can only control the rms of offsets to about 100 $mu$m, which is far from reaching the requirement. Further orbit correction can be achieved by beam-based alignment (BBA) method based on electron energy variations. K modulation is used to determine whether the beam passes through the quadrupole magnetic center, and the Dispersion-Free Steering (DFS) method is used to calculate the offsets of quadrupole and BPM. In this paper, a detailed result of simulation is presented which demonstrates that the beam trajectory with rms and standard deviation ($sigma$) less than 10 $mu$m can be obtained.



rate research

Read More

In free electron laser facilities, almost every kind of device will generate wakefield when an electron beam passes through it. Most of the wakefields are undesired and have a negative effect on the electron beam, which means a decrease of FEL performance. As for the SXFEL test facility, the sophisticated layout and the cumulative effect of such a long undulator section lead to an obvious wakefield, which is strong enough that can not be ignored. Based on two deflecting cavities at the entrance and the exit of the undulator section with corresponding profile monitors, we measured the wakefield of the undulator section. In this paper, we give the theoretical and simulation results of resistive wall wakefields which agree well with each other. In addition, the experimental and the simulation results of the overall undulator wakefield are given showing small difference. In order to explore the impact of this wakefield on FEL lasing, we give the simulation results of FEL with and without wakefield for comparison. There is almost no impact on 44 nm FEL in stage-1 of cascaded EEHG-HGHG mode, while the impact on 8.8 nm FEL in stage-2 becomes critical decreasing the pulse energy and peak power by 42% and 27% and broadening the bandwidth.
Aiming at high precision beam position measurement of micron or sub-micron for Shanghai Soft X-ray free electron laser (SXFEL) facility which is being built in site of the Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics has developed a high Q cavity beam position monitor (CBPM) that the resonant frequency is 4.7 GHz and relevant BPM electronics include dedicated RF front-end and home-made digital BPM (DBPM) also has been done. The cavity design, cold test, system architecture and the beam test with three adjacent pickups has been performed in Shanghai Deep ultraviolet free electron laser(SDUV-FEL) facility are included. The beam experiment results show that the physical design of our CBPM is consistent with the expectations basically and the beam position resolution can fulfill the resolution requirements for the SXFEL project if we optimize the beam conditions.
107 - V.M. Biryukov 2007
Tabrizi et al. [physics/0701342] discuss the feasibility of an electron-based crystal undulator (e-CU) by planar channeling of 50 GeV electrons through a periodically bent crystal. We show that their scheme is not feasible. First, their undulator parameter is K >> 1 always, which destroys photon interference. Second, they overestimate the electron dechanneling length in e-CU by an order of magnitude, which shortens the number N of e-CU periods from 5-15 (as they hope) to just 1-2. This kills their e-CU concept again. We made first simulation of electron channeling in undulated crystal and conclude that an electron-based crystal wiggler is feasible with wiggler strength K=10 and number of periods N=2.
In the baseline design of the International Linear Collider (ILC) an undulator-based source is foreseen for the positron source in order to match the physics requirements. The baseline parameters are optimized for the ILC at sqrt(s)=500 GeV, that means an electron drive beam of 250 GeV. Precision measurements in the Higgs sector, however, require measurements at sqrt(s)=250 GeV, i.e. running with the electron drive beam only at 125 GeV, which imposes a challenge for achieving a high yield. Therefore the baseline undulator parameters have to be optimized as much as possible within their technical performances. In this bachelor thesis we therefore present a theoretical study on the radiation spectra of a helical undulator, based on the equation for the radiated synchrotron energy spectral density per solid angle per electron in the relativistic, far-field and point-like charge approximation. From this starting point the following undulator properties are examined: the deposited power in the undulator vessel, which can disrupt the functionality of the undulator magnets, the protective property of a mask on this disturbances and the number of positrons produced by the synchrotron radiation in a Ti6Al4V target. Those quantities were evaluated for various values for parameters as undulator period, undulator length and magnetic flux in order to find optimal baseline parameter sets for sqrt(s)=250 GeV.
A new type of helical undulator based on redistribution of magnetic field of a solenoid by ferromagnetic helix has been proposed and studied both in theory and experiment. Such undulators are very simple and efficient for promising sources of coherent spontaneous THz undulator radiation from dense electron bunches formed in laser-driven photo-injectors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا