Do you want to publish a course? Click here

Measurement of undulator section wakefield at the SXFEL test facility

70   0   0.0 ( 0 )
 Added by He Liu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In free electron laser facilities, almost every kind of device will generate wakefield when an electron beam passes through it. Most of the wakefields are undesired and have a negative effect on the electron beam, which means a decrease of FEL performance. As for the SXFEL test facility, the sophisticated layout and the cumulative effect of such a long undulator section lead to an obvious wakefield, which is strong enough that can not be ignored. Based on two deflecting cavities at the entrance and the exit of the undulator section with corresponding profile monitors, we measured the wakefield of the undulator section. In this paper, we give the theoretical and simulation results of resistive wall wakefields which agree well with each other. In addition, the experimental and the simulation results of the overall undulator wakefield are given showing small difference. In order to explore the impact of this wakefield on FEL lasing, we give the simulation results of FEL with and without wakefield for comparison. There is almost no impact on 44 nm FEL in stage-1 of cascaded EEHG-HGHG mode, while the impact on 8.8 nm FEL in stage-2 becomes critical decreasing the pulse energy and peak power by 42% and 27% and broadening the bandwidth.



rate research

Read More

The undulator line of the Shanghai soft X-ray Free-electron Laser facility (SXFEL) has very tight tolerances on the straightness of the electron beam trajectory. However, the beam trajectory cannot meet the lasing requirements due to the influence of beam position, launch angle and quadrupole offsets. Traditional mechanical alignment can only control the rms of offsets to about 100 $mu$m, which is far from reaching the requirement. Further orbit correction can be achieved by beam-based alignment (BBA) method based on electron energy variations. K modulation is used to determine whether the beam passes through the quadrupole magnetic center, and the Dispersion-Free Steering (DFS) method is used to calculate the offsets of quadrupole and BPM. In this paper, a detailed result of simulation is presented which demonstrates that the beam trajectory with rms and standard deviation ($sigma$) less than 10 $mu$m can be obtained.
Aiming at high precision beam position measurement of micron or sub-micron for Shanghai Soft X-ray free electron laser (SXFEL) facility which is being built in site of the Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics has developed a high Q cavity beam position monitor (CBPM) that the resonant frequency is 4.7 GHz and relevant BPM electronics include dedicated RF front-end and home-made digital BPM (DBPM) also has been done. The cavity design, cold test, system architecture and the beam test with three adjacent pickups has been performed in Shanghai Deep ultraviolet free electron laser(SDUV-FEL) facility are included. The beam experiment results show that the physical design of our CBPM is consistent with the expectations basically and the beam position resolution can fulfill the resolution requirements for the SXFEL project if we optimize the beam conditions.
114 - E. Harms , K. Carlson , B. Chase 2012
Powered operation of Cryomodule 1 (CM-1) at the Fermilab SRF Beam Test Facility began in late 2010. Since then a series of tests first on the eight individual cavities and then the full cryomodule have been performed. We report on the results of these tests and lessons learned which will have an impact on future module testing at Fermilab.
77 - Gennady Stupakov 2017
We show that a short relativistic electron beam propagating in a plasma with a density gradient perpendicular to the direction of motion generates a wakefield in which a witness bunch experiences a transverse force. A density gradient oscillating along the beam path would create a periodically varying force---an undulator, with an estimated strength of the equivalent magnetic field more than ten Tesla. This opens an avenue for creation of a high-strength, short-period undulators, which eventually may lead to all-plasma, free electron lasers where a plasma wakefield acceleration is naturally combined with a plasma undulator in a unifying, compact setup.
The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and testbed for the development and realization of SwissFEL, the X-ray Free-Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including a transverse deflecting rf cavity. It delivered electron bunches of up to 200 pC charge and up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of an FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultra-low-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measurements performed during the operation of the test facility, including the results of the test of an in-vacuum undulator prototype generating radiation in the vacuum ultraviolet and optical range.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا