Do you want to publish a course? Click here

Terahertz waves generation using the isomorphs of PPKTP crystal: a theoretical investigation

162   0   0.0 ( 0 )
 Added by Rui-Bo Jin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Highly efficient terahertz (THz) wave sources based on difference frequency generation (DFG) process in nonlinear optical crystals play an important role for the applications of THz wave. In order to find more novel nonlinear crystals, here we theoretically investigate the generation of THz wave using the isomorphs of periodically poled $mathrm{KTiOPO_4}$ (PPKTP), including periodically poled RTP, KTA, RTA and CTA. By solving the cascaded difference frequency coupled wave equations, it is found that the intensities of the THz wave generated from the cascaded difference frequency processes are improved by 5.27, 2.87, 2.82, 3.03, and 2.76 times from the non-cascaded cases for KTP, RTP, KTA, RTA and CTA, respectively. The effects of the crystal absorption, the phase mismatch and the pump intensity are also analyzed in detail. This study might help to provide a stronger THz radiation source based on the nonlinear crystals.



rate research

Read More

We theoretically and numerically investigate the temperature-dependent properties of the biphotons generated from four isomorphs of periodically poled $mathrm{KTiOPO_4}$ (PPKTP): i.e., PPRTP, PPKTA, PPRTA and PPCTA. It is discovered that the first type of group-velocity-matched (GVM) wavelength is decreased by 6.4, 1.2, 8.9, 25.6 and 6.3 nm, while the phase-matched wavelength is decreased by 4.4, -0.4, -1.2, 29.1 and 59.5 nm for PPKTP, PPRTP, PPKTA, PPRTA and PPCTA, respectively, when the temperature is increased from 20$,^{circ}mathrm{C}$ to 120$,^{circ}mathrm{C}$. Although the maximal spectral purity of the heralded single photons is not changed at different temperature, the Hong-Ou-Mandel (HOM) interference shows different patterns due to a shift of the joint spectral amplitude. These thermal effects are very important for precise control of the quantum state for the future applications in quantum information processing, for example, in quantum interference or spectroscopy.
Spectrally uncorrelated biphoton state generated from the spontaneous nonlinear optical process is an important resource for quantum information. Currently such spectrally uncorrelated biphoton state can only be prepared from limited kinds of nonlinear media, thus limiting their wavelengths. In order to explore wider wavelength range, here we theoretically study the generation of spectrally uncorrelated biphoton state from 14 isomorphs of potassium dihydrogen phosphate (KDP) crystal. We find that 11 crystals from the `KDP family still maintain similar nonlinear optical properties of KDP, such as KDP, DKDP, ADP, DADP, ADA, DADA, RDA, DRDA, RDP, DRDP and KDA, which satisfy 3 kinds of the group-velocity matching conditions for spectrally uncorrelated biphoton state generation from near-infrared to telecom wavelengths. Based on the uncorrelated biphoton state, we investigate the generation of heralded pure-state single photon by detecting one member of the biphoton state to herald the output of the other. The purity of the heralded single photon is as high as 0.98 without using a narrow-band filter; the Hong-Ou-Mandel interference from independent sources can also achieve a visibility of 98%. This study may provide more and better single-photon sources for quantum information processing at near-infrared and telecom wavelengths.
The Terahertz or millimeter wave frequency band (300 GHz - 3 THz) is spectrally located between microwaves and infrared light and has attracted significant interest for applications in broadband wireless communications, space-borne radiometers for Earth remote sensing, astrophysics, and imaging. In particular optically generated THz waves are of high interest for low-noise signal generation. In particular optically generated THz waves are of high interest for low-noise signal generation. Here, we propose and demonstrate stabilized terahertz wave generation using a microresonator-based frequency comb (microcomb). A unitravelling-carrier photodiode (UTC-PD) converts low-noise optical soliton pulses from the microcomb to a terahertz wave at the solitons repetition rate (331 GHz). With a free-running microcomb, the Allan deviation of the Terahertz signal is 4.5*10^-9 at 1 s measurement time with a phase noise of -72 dBc/Hz (-118 dBc/Hz) at 10 kHz (10 MHz) offset frequency. By locking the repetition rate to an in-house hydrogen maser, in-loop fractional frequency stabilities of 9.6*10^-15 and 1.9*10^-17 are obtained at averaging times of 1 s and 2000 s respectively, limited by the maser reference signal. Moreover, the terahertz signal is successfully used to perform a proof-of-principle demonstration of terahertz imaging of peanuts. Combining the monolithically integrated UTC-PD with an on-chip microcomb, the demonstrated technique could provide a route towards highly stable continuous terahertz wave generation in chip-scale packages for out-of-the-lab applications. In particular, such systems would be useful as compact tools for high-capacity wireless communication, spectroscopy, imaging, remote sensing, and astrophysical applications.
We characterize the terahertz (THz) generation of N-benzyl-2-methyl-4-nitroaniline (BNA), with crystals ranging in thickness from 123-700 {mu}m. We compare excitation using 800-nm and 1250 to 1500-nm wavelengths. Pumping BNA with 800-nm wavelengths and longer near-infrared wavelengths results in a broad spectrum, producing out to 6 THz using a 100-fs pump, provided the BNA crystal is thin enough. ~200 {mu}m or thinner crystals are required to produce a broad spectrum with an 800-nm pump, whereas ~300 {mu}m thick crystals are optimal for broadband THz generation using the longer wavelengths. We report the favorable THz generation and optical characteristics of our BNA crystals that make them attractive for broadband, high-field THz generation, and we also find significant differences to BNA results reported in other works.
Arbitrary manipulation of broadband terahertz waves with flexible polarization shaping at the source has great potential in expanding real applications such as imaging, information encryption, and all-optically coherent control of terahertz nonlinear phenomena. Topological insulators featuring unique spin-momentum locked surface state have already exhibited very promising prospects in terahertz emission, detection and modulation, which may lay a foundation for future on-chip topological insulator-based terahertz systems. However, polarization shaped terahertz emission with prescribed manners of arbitrarily manipulated temporal evolution of the amplitude and electric-field vector direction based on topological insulators have not yet been explored. Here we systematically investigated the terahertz radiation from topological insulator Bi2Te3 nanofilms driven by femtosecond laser pulses, and successfully realized the generation of efficient chiral terahertz waves with controllable chirality, ellipticity, and principle axis. The convenient engineering of the chiral terahertz waves was interpreted by photogalvanic effect induced photocurrent, while the linearly polarized terahertz waves originated from linear photogalvanic effect induced shift currents. We believe our works not only help further understanding femtosecond coherent control of ultrafast spin currents in light-matter interaction but also provide an effective way to generate spin-polarized terahertz waves and accelerate the proliferation of twisting the terahertz waves at the source.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا