Do you want to publish a course? Click here

Heredity-aware Child Face Image Generation with Latent Space Disentanglement

217   0   0.0 ( 0 )
 Added by Xiao Cui
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Generative adversarial networks have been widely used in image synthesis in recent years and the quality of the generated image has been greatly improved. However, the flexibility to control and decouple facial attributes (e.g., eyes, nose, mouth) is still limited. In this paper, we propose a novel approach, called ChildGAN, to generate a childs image according to the images of parents with heredity prior. The main idea is to disentangle the latent space of a pre-trained generation model and precisely control the face attributes of child images with clear semantics. We use distances between face landmarks as pseudo labels to figure out the most influential semantic vectors of the corresponding face attributes by calculating the gradient of latent vectors to pseudo labels. Furthermore, we disentangle the semantic vectors by weighting irrelevant features and orthogonalizing them with Schmidt Orthogonalization. Finally, we fuse the latent vector of the parents by leveraging the disentangled semantic vectors under the guidance of biological genetic laws. Extensive experiments demonstrate that our approach outperforms the existing methods with encouraging results.



rate research

Read More

143 - Yuxuan Han , Jiaolong Yang , 2021
Recent works have shown that a rich set of semantic directions exist in the latent space of Generative Adversarial Networks (GANs), which enables various facial attribute editing applications. However, existing methods may suffer poor attribute variation disentanglement, leading to unwanted change of other attributes when altering the desired one. The semantic directions used by existing methods are at attribute level, which are difficult to model complex attribute correlations, especially in the presence of attribute distribution bias in GANs training set. In this paper, we propose a novel framework (IALS) that performs Instance-Aware Latent-Space Search to find semantic directions for disentangled attribute editing. The instance information is injected by leveraging the supervision from a set of attribute classifiers evaluated on the input images. We further propose a Disentanglement-Transformation (DT) metric to quantify the attribute transformation and disentanglement efficacy and find the optimal control factor between attribute-level and instance-specific directions based on it. Experimental results on both GAN-generated and real-world images collectively show that our method outperforms state-of-the-art methods proposed recently by a wide margin. Code is available at https://github.com/yxuhan/IALS.
Image-to-image translation tasks have been widely investigated with Generative Adversarial Networks (GANs). However, existing approaches are mostly designed in an unsupervised manner while little attention has been paid to domain information within unpaired data. In this paper, we treat domain information as explicit supervision and design an unpaired image-to-image translation framework, Domain-supervised GAN (DosGAN), which takes the first step towards the exploration of explicit domain supervision. In contrast to representing domain characteristics using different generators or domain codes, we pre-train a classification network to explicitly classify the domain of an image. After pre-training, this network is used to extract the domain-specific features of each image. Such features, together with the domain-independent features extracted by another encoder (shared across different domains), are used to generate image in target domain. Extensive experiments on multiple facial attribute translation, multiple identity translation, multiple season translation and conditional edges-to-shoes/handbags demonstrate the effectiveness of our method. In addition, we can transfer the domain-specific feature extractor obtained on the Facescrub dataset with domain supervision information to unseen domains, such as faces in the CelebA dataset. We also succeed in achieving conditional translation with any two images in CelebA, while previous models like StarGAN cannot handle this task.
Recent studies have shown remarkable success in face image generations. However, most of the existing methods only generate face images from random noise, and cannot generate face images according to the specific attributes. In this paper, we focus on the problem of face synthesis from attributes, which aims at generating faces with specific characteristics corresponding to the given attributes. To this end, we propose a novel attributes aware face image generator method with generative adversarial networks called AFGAN. Specifically, we firstly propose a two-path embedding layer and self-attention mechanism to convert binary attribute vector to rich attribute features. Then three stacked generators generate $64 times 64$, $128 times 128$ and $256 times 256$ resolution face images respectively by taking the attribute features as input. In addition, an image-attribute matching loss is proposed to enhance the correlation between the generated images and input attributes. Extensive experiments on CelebA demonstrate the superiority of our AFGAN in terms of both qualitative and quantitative evaluations.
The goal of Sketch-Based Image Retrieval (SBIR) is using free-hand sketches to retrieve images of the same category from a natural image gallery. However, SBIR requires all test categories to be seen during training, which cannot be guaranteed in real-world applications. So we investigate more challenging Zero-Shot SBIR (ZS-SBIR), in which test categories do not appear in the training stage. After realizing that sketches mainly contain structure information while images contain additional appearance information, we attempt to achieve structure-aware retrieval via asymmetric disentanglement.For this purpose, we propose our STRucture-aware Asymmetric Disentanglement (STRAD) method, in which image features are disentangled into structure features and appearance features while sketch features are only projected to structure space. Through disentangling structure and appearance space, bi-directional domain translation is performed between the sketch domain and the image domain. Extensive experiments demonstrate that our STRAD method remarkably outperforms state-of-the-art methods on three large-scale benchmark datasets.
Our ability to sample realistic natural images, particularly faces, has advanced by leaps and bounds in recent years, yet our ability to exert fine-tuned control over the generative process has lagged behind. If this new technology is to find practical uses, we need to achieve a level of control over generative networks which, without sacrificing realism, is on par with that seen in computer graphics and character animation. To this end we propose ConfigNet, a neural face model that allows for controlling individual aspects of output images in semantically meaningful ways and that is a significant step on the path towards finely-controllable neural rendering. ConfigNet is trained on real face images as well as synthetic face renders. Our novel method uses synthetic data to factorize the latent space into elements that correspond to the inputs of a traditional rendering pipeline, separating aspects such as head pose, facial expression, hair style, illumination, and many others which are very hard to annotate in real data. The real images, which are presented to the network without labels, extend the variety of the generated images and encourage realism. Finally, we propose an evaluation criterion using an attribute detection network combined with a user study and demonstrate state-of-the-art individual control over attributes in the output images.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا