Do you want to publish a course? Click here

CONFIG: Controllable Neural Face Image Generation

120   0   0.0 ( 0 )
 Added by Marek Kowalski
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Our ability to sample realistic natural images, particularly faces, has advanced by leaps and bounds in recent years, yet our ability to exert fine-tuned control over the generative process has lagged behind. If this new technology is to find practical uses, we need to achieve a level of control over generative networks which, without sacrificing realism, is on par with that seen in computer graphics and character animation. To this end we propose ConfigNet, a neural face model that allows for controlling individual aspects of output images in semantically meaningful ways and that is a significant step on the path towards finely-controllable neural rendering. ConfigNet is trained on real face images as well as synthetic face renders. Our novel method uses synthetic data to factorize the latent space into elements that correspond to the inputs of a traditional rendering pipeline, separating aspects such as head pose, facial expression, hair style, illumination, and many others which are very hard to annotate in real data. The real images, which are presented to the network without labels, extend the variety of the generated images and encourage realism. Finally, we propose an evaluation criterion using an attribute detection network combined with a user study and demonstrate state-of-the-art individual control over attributes in the output images.



rate research

Read More

We propose DiscoFaceGAN, an approach for face image generation of virtual people with disentangled, precisely-controllable latent representations for identity of non-existing people, expression, pose, and illumination. We embed 3D priors into adversarial learning and train the network to imitate the image formation of an analytic 3D face deformation and rendering process. To deal with the generation freedom induced by the domain gap between real and rendered faces, we further introduce contrastive learning to promote disentanglement by comparing pairs of generated images. Experiments show that through our imitative-contrastive learning, the factor variations are very well disentangled and the properties of a generated face can be precisely controlled. We also analyze the learned latent space and present several meaningful properties supporting factor disentanglement. Our method can also be used to embed real images into the disentangled latent space. We hope our method could provide new understandings of the relationship between physical properties and deep image synthesis.
In this paper, we leverage advances in neural networks towards forming a neural rendering for controllable image generation, and thereby bypassing the need for detailed modeling in conventional graphics pipeline. To this end, we present Neural Graphics Pipeline (NGP), a hybrid generative model that brings together neural and traditional image formation models. NGP decomposes the image into a set of interpretable appearance feature maps, uncovering direct control handles for controllable image generation. To form an image, NGP generates coarse 3D models that are fed into neural rendering modules to produce view-specific interpretable 2D maps, which are then composited into the final output image using a traditional image formation model. Our approach offers control over image generation by providing direct handles controlling illumination and camera parameters, in addition to control over shape and appearance variations. The key challenge is to learn these controls through unsupervised training that links generated coarse 3D models with unpaired real images via neural and traditional (e.g., Blinn- Phong) rendering functions, without establishing an explicit correspondence between them. We demonstrate the effectiveness of our approach on controllable image generation of single-object scenes. We evaluate our hybrid modeling framework, compare with neural-only generation methods (namely, DCGAN, LSGAN, WGAN-GP, VON, and SRNs), report improvement in FID scores against real images, and demonstrate that NGP supports direct controls common in traditional forward rendering. Code is available at http://geometry.cs.ucl.ac.uk/projects/2021/ngp.
178 - Hang Zhou , Yasheng Sun , Wayne Wu 2021
While accurate lip synchronization has been achieved for arbitrary-subject audio-driven talking face generation, the problem of how to efficiently drive the head pose remains. Previous methods rely on pre-estimated structural information such as landmarks and 3D parameters, aiming to generate personalized rhythmic movements. However, the inaccuracy of such estimated information under extreme conditions would lead to degradation problems. In this paper, we propose a clean yet effective framework to generate pose-controllable talking faces. We operate on raw face images, using only a single photo as an identity reference. The key is to modularize audio-visual representations by devising an implicit low-dimension pose code. Substantially, both speech content and head pose information lie in a joint non-identity embedding space. While speech content information can be defined by learning the intrinsic synchronization between audio-visual modalities, we identify that a pose code will be complementarily learned in a modulated convolution-based reconstruction framework. Extensive experiments show that our method generates accurately lip-synced talking faces whose poses are controllable by other videos. Moreover, our model has multiple advanced capabilities including extreme view robustness and talking face frontalization. Code, models, and demo videos are available at https://hangz-nju-cuhk.github.io/projects/PC-AVS.
This paper introduces the Deep Recurrent Attentive Writer (DRAW) neural network architecture for image generation. DRAW networks combine a novel spatial attention mechanism that mimics the foveation of the human eye, with a sequential variational auto-encoding framework that allows for the iterative construction of complex images. The system substantially improves on the state of the art for generative models on MNIST, and, when trained on the Street View House Numbers dataset, it generates images that cannot be distinguished from real data with the naked eye.
112 - Yong Zhang , Le Li , Zhilei Liu 2020
Kinship face synthesis is an interesting topic raised to answer questions like what will your future children look like?. Published approaches to this topic are limited. Most of the existing methods train models for one-versus-one kin relation, which only consider one parent face and one child face by directly using an auto-encoder without any explicit control over the resemblance of the synthesized face to the parent face. In this paper, we propose a novel method for controllable descendant face synthesis, which models two-versus-one kin relation between two parent faces and one child face. Our model consists of an inheritance module and an attribute enhancement module, where the former is designed for accurate control over the resemblance between the synthesized face and parent faces, and the latter is designed for control over age and gender. As there is no large scale database with father-mother-child kinship annotation, we propose an effective strategy to train the model without using the ground truth descendant faces. No carefully designed image pairs are required for learning except only age and gender labels of training faces. We conduct comprehensive experimental evaluations on three public benchmark databases, which demonstrates encouraging results.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا