Do you want to publish a course? Click here

EncoderMI: Membership Inference against Pre-trained Encoders in Contrastive Learning

157   0   0.0 ( 0 )
 Added by Hongbin Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Given a set of unlabeled images or (image, text) pairs, contrastive learning aims to pre-train an image encoder that can be used as a feature extractor for many downstream tasks. In this work, we propose EncoderMI, the first membership inference method against image encoders pre-trained by contrastive learning. In particular, given an input and a black-box access to an image encoder, EncoderMI aims to infer whether the input is in the training dataset of the image encoder. EncoderMI can be used 1) by a data owner to audit whether its (public) data was used to pre-train an image encoder without its authorization or 2) by an attacker to compromise privacy of the training data when it is private/sensitive. Our EncoderMI exploits the overfitting of the image encoder towards its training data. In particular, an overfitted image encoder is more likely to output more (or less) similar feature vectors for two augmente

rate research

Read More

Recently, recommender systems have achieved promising performances and become one of the most widely used web applications. However, recommender systems are often trained on highly sensitive user data, thus potential data leakage from recommender systems may lead to severe privacy problems. In this paper, we make the first attempt on quantifying the privacy leakage of recommender systems through the lens of membership inference. In contrast with traditional membership inference against machine learning classifiers, our attack faces two main differences. First, our attack is on the user-level but not on the data sample-level. Second, the adversary can only observe the ordered recommended items from a recommender system instead of prediction results in the form of posterior probabilities. To address the above challenges, we propose a novel method by representing users from relevant items. Moreover, a shadow recommender is established to derive the labeled training data for training the attack model. Extensive experimental results show that our attack framework achieves a strong performance. In addition, we design a defense mechanism to effectively mitigate the membership inference threat of recommender systems.
Transfer learning has been widely studied and gained increasing popularity to improve the accuracy of machine learning models by transferring some knowledge acquired in different training. However, no prior work has pointed out that transfer learning can strengthen privacy attacks on machine learning models. In this paper, we propose TransMIA (Transfer learning-based Membership Inference Attacks), which use transfer learning to perform membership inference attacks on the source model when the adversary is able to access the parameters of the transferred model. In particular, we propose a transfer shadow training technique, where an adversary employs the parameters of the transferred model to construct shadow models, to significantly improve the performance of membership inference when a limited amount of shadow training data is available to the adversary. We evaluate our attacks using two real datasets, and show that our attacks outperform the state-of-the-art that does not use our transfer shadow training technique. We also compare four combinations of the learning-based/entropy-based approach and the fine-tuning/freezing approach, all of which employ our transfer shadow training technique. Then we examine the performance of these four approaches based on the distributions of confidence values, and discuss possible countermeasures against our attacks.
135 - Xinlei He , Rui Wen , Yixin Wu 2021
Many real-world data comes in the form of graphs, such as social networks and protein structure. To fully utilize the information contained in graph data, a new family of machine learning (ML) models, namely graph neural networks (GNNs), has been introduced. Previous studies have shown that machine learning models are vulnerable to privacy attacks. However, most of the current efforts concentrate on ML models trained on data from the Euclidean space, like images and texts. On the other hand, privacy risks stemming from GNNs remain largely unstudied. In this paper, we fill the gap by performing the first comprehensive analysis of node-level membership inference attacks against GNNs. We systematically define the threat models and propose three node-level membership inference attacks based on an adversarys background knowledge. Our evaluation on three GNN structures and four benchmark datasets shows that GNNs are vulnerable to node-level membership inference even when the adversary has minimal background knowledge. Besides, we show that graph density and feature similarity have a major impact on the attacks success. We further investigate two defense mechanisms and the empirical results indicate that these defenses can reduce the attack performance but with moderate utility loss.
134 - Yi Shi , Yalin E. Sagduyu 2021
An over-the-air membership inference attack (MIA) is presented to leak private information from a wireless signal classifier. Machine learning (ML) provides powerful means to classify wireless signals, e.g., for PHY-layer authentication. As an adversarial machine learning attack, the MIA infers whether a signal of interest has been used in the training data of a target classifier. This private information incorporates waveform, channel, and device characteristics, and if leaked, can be exploited by an adversary to identify vulnerabilities of the underlying ML model (e.g., to infiltrate the PHY-layer authentication). One challenge for the over-the-air MIA is that the received signals and consequently the RF fingerprints at the adversary and the intended receiver differ due to the discrepancy in channel conditions. Therefore, the adversary first builds a surrogate classifier by observing the spectrum and then launches the black-box MIA on this classifier. The MIA results show that the adversary can reliably infer signals (and potentially the radio and channel information) used to build the target classifier. Therefore, a proactive defense is developed against the MIA by building a shadow MIA model and fooling the adversary. This defense can successfully reduce the MIA accuracy and prevent information leakage from the wireless signal classifier.
356 - Yugeng Liu , Rui Wen , Xinlei He 2021
Inference attacks against Machine Learning (ML) models allow adversaries to learn information about training data, model parameters, etc. While researchers have studied these attacks thoroughly, they have done so in isolation. We lack a comprehensive picture of the risks caused by the attacks, such as the different scenarios they can be applied to, the common factors that influence their performance, the relationship among them, or the effectiveness of defense techniques. In this paper, we fill this gap by presenting a first-of-its-kind holistic risk assessment of different inference attacks against machine learning models. We concentrate on four attacks - namely, membership inference, model inversion, attribute inference, and model stealing - and establish a threat model taxonomy. Our extensive experimental evaluation conducted over five model architectures and four datasets shows that the complexity of the training dataset plays an important role with respect to the attacks performance, while the effectiveness of model stealing and membership inference attacks are negatively correlated. We also show that defenses like DP-SGD and Knowledge Distillation can only hope to mitigate some of the inference attacks. Our analysis relies on a modular re-usable software, ML-Doctor, which enables ML model owners to assess the risks of deploying their models, and equally serves as a benchmark tool for researchers and practitioners.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا