Do you want to publish a course? Click here

Node-Level Membership Inference Attacks Against Graph Neural Networks

136   0   0.0 ( 0 )
 Added by XInlei He
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Many real-world data comes in the form of graphs, such as social networks and protein structure. To fully utilize the information contained in graph data, a new family of machine learning (ML) models, namely graph neural networks (GNNs), has been introduced. Previous studies have shown that machine learning models are vulnerable to privacy attacks. However, most of the current efforts concentrate on ML models trained on data from the Euclidean space, like images and texts. On the other hand, privacy risks stemming from GNNs remain largely unstudied. In this paper, we fill the gap by performing the first comprehensive analysis of node-level membership inference attacks against GNNs. We systematically define the threat models and propose three node-level membership inference attacks based on an adversarys background knowledge. Our evaluation on three GNN structures and four benchmark datasets shows that GNNs are vulnerable to node-level membership inference even when the adversary has minimal background knowledge. Besides, we show that graph density and feature similarity have a major impact on the attacks success. We further investigate two defense mechanisms and the empirical results indicate that these defenses can reduce the attack performance but with moderate utility loss.



rate research

Read More

Recently, recommender systems have achieved promising performances and become one of the most widely used web applications. However, recommender systems are often trained on highly sensitive user data, thus potential data leakage from recommender systems may lead to severe privacy problems. In this paper, we make the first attempt on quantifying the privacy leakage of recommender systems through the lens of membership inference. In contrast with traditional membership inference against machine learning classifiers, our attack faces two main differences. First, our attack is on the user-level but not on the data sample-level. Second, the adversary can only observe the ordered recommended items from a recommender system instead of prediction results in the form of posterior probabilities. To address the above challenges, we propose a novel method by representing users from relevant items. Moreover, a shadow recommender is established to derive the labeled training data for training the attack model. Extensive experimental results show that our attack framework achieves a strong performance. In addition, we design a defense mechanism to effectively mitigate the membership inference threat of recommender systems.
Membership inference attacks seek to infer membership of individual training instances of a model to which an adversary has black-box access through a machine learning-as-a-service API. In providing an in-depth characterization of membership privacy risks against machine learning models, this paper presents a comprehensive study towards demystifying membership inference attacks from two complimentary perspectives. First, we provide a generalized formulation of the development of a black-box membership inference attack model. Second, we characterize the importance of model choice on model vulnerability through a systematic evaluation of a variety of machine learning models and model combinations using multiple datasets. Through formal analysis and empirical evidence from extensive experimentation, we characterize under what conditions a model may be vulnerable to such black-box membership inference attacks. We show that membership inference vulnerability is data-driven and corresponding attack models are largely transferable. Though different model types display different vulnerabilities to membership inference, so do different datasets. Our empirical results additionally show that (1) using the type of target model under attack within the attack model may not increase attack effectiveness and (2) collaborative learning exposes vulnerabilities to membership inference risks when the adversary is a participant. We also discuss countermeasure and mitigation strategies.
Graph modeling allows numerous security problems to be tackled in a general way, however, little work has been done to understand their ability to withstand adversarial attacks. We design and evaluate two novel graph attacks against a state-of-the-art network-level, graph-based detection system. Our work highlights areas in adversarial machine learning that have not yet been addressed, specifically: graph-based clustering techniques, and a global feature space where realistic attackers without perfect knowledge must be accounted for (by the defenders) in order to be practical. Even though less informed attackers can evade graph clustering with low cost, we show that some practical defenses are possible.
227 - Ziqi Yang , Bin Shao , Bohan Xuan 2020
Neural networks are susceptible to data inference attacks such as the model inversion attack and the membership inference attack, where the attacker could infer the reconstruction and the membership of a data sample from the confidence scores predicted by the target classifier. In this paper, we propose a unified approach, namely purification framework, to defend data inference attacks. It purifies the confidence score vectors predicted by the target classifier by reducing their dispersion. The purifier can be further specialized in defending a particular attack via adversarial learning. We evaluate our approach on benchmark datasets and classifiers. We show that when the purifier is dedicated to one attack, it naturally defends the other one, which empirically demonstrates the connection between the two attacks. The purifier can effectively defend both attacks. For example, it can reduce the membership inference accuracy by up to 15% and increase the model inversion error by a factor of up to 4. Besides, it incurs less than 0.4% classification accuracy drop and less than 5.5% distortion to the confidence scores.
Node injection attack on Graph Neural Networks (GNNs) is an emerging and practical attack scenario that the attacker injects malicious nodes rather than modifying original nodes or edges to affect the performance of GNNs. However, existing node injection attacks ignore extremely limited scenarios, namely the injected nodes might be excessive such that they may be perceptible to the target GNN. In this paper, we focus on an extremely limited scenario of single node injection evasion attack, i.e., the attacker is only allowed to inject one single node during the test phase to hurt GNNs performance. The discreteness of network structure and the coupling effect between network structure and node features bring great challenges to this extremely limited scenario. We first propose an optimization-based method to explore the performance upper bound of single node injection evasion attack. Experimental results show that 100%, 98.60%, and 94.98% nodes on three public datasets are successfully attacked even when only injecting one node with one edge, confirming the feasibility of single node injection evasion attack. However, such an optimization-based method needs to be re-optimized for each attack, which is computationally unbearable. To solve the dilemma, we further propose a Generalizable Node Injection Attack model, namely G-NIA, to improve the attack efficiency while ensuring the attack performance. Experiments are conducted across three well-known GNNs. Our proposed G-NIA significantly outperforms state-of-the-art baselines and is 500 times faster than the optimization-based method when inferring.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا