Do you want to publish a course? Click here

Magnon-polarons in van der Waals antiferromagnet FePS3

195   0   0.0 ( 0 )
 Added by Milan Orlita
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The hybridization of magnons (spin waves) with phonons, if sufficiently strong and comprising long wavelength excitations, may offer a new playground when manipulating the magnetically ordered systems with light. Applying a magnetic field to a quasi-2D antiferromagnet, FePS3, we tune the magnon-gap excitation towards coincidence with the initially lower-in-energy phonon modes. Hybrid magnon-phonon modes, the magnon polarons are unveiled with demonstration of a pronounced avoided crossing between the otherwise bare magnon and phonon excitations. The magnon polarons in FePS3 are primary traced with Raman scattering experiments, but, as we show, they also couple directly to terahertz photons, what evokes their further explorations in the domain of antiferromagnetic optospintronics.



rate research

Read More

141 - Wenyu Xing , Luyi Qiu , Xirui Wang 2019
The recent emergence of 2D van der Waals magnets down to atomic layer thickness provides an exciting platform for exploring quantum magnetism and spintronics applications. The van der Waals nature stabilizes the long-range ferromagnetic order as a result of magnetic anisotropy. Furthermore, giant tunneling magnetoresistance and electrical control of magnetism have been reported. However, the potential of 2D van der Waals magnets for magnonics, magnon-based spintronics, has not been explored yet. Here, we report the experimental observation of long-distance magnon transport in quasi-twodimensional van der Waals antiferromagnet MnPS3, which demonstrates the 2D magnets as promising material candidates for magnonics. As the 2D MnPS3 thickness decreases, a shorter magnon diffusion length is observed, which could be attributed to the surface-impurity-induced magnon scattering. Our results could pave the way for exploring quantum magnonics phenomena and designing future magnonics devices based on 2D van der Waals magnets.
Magnetic van der Waals materials provide an ideal playground for exploring the fundamentals of low-dimensional magnetism and open new opportunities for ultrathin spin processing devices. The Mermin-Wagner theorem dictates that as in reduced dimensions isotropic spin interactions cannot retain long-range correlations; the order is stabilized by magnetic anisotropy. Here, using ultrashort pulses of light, we demonstrate all-optical control of magnetic anisotropy in the two-dimensional van der Waals antiferromagnet NiPS$_3$. Tuning the photon energy in resonance with an orbital transition between crystal-field split levels of the nickel ions, we demonstrate the selective activation of a sub-THz two-dimensional magnon mode. The pump polarization control of the magnon amplitude confirms that the activation is governed by the instantaneous magnetic anisotropy axis emergent in response to photoexcitation of orbital states with a lowered symmetry. Our results establish pumping of orbital resonances as a universal route for manipulating magnetic order in low-dimensional (anti)ferromagnets.
The crystallographic and magnetic properties of the cleavable 4d3 transition metal compound a-MoCl3 are reported, with a focus on the behavior above room temperature. Crystals were grown by chemical vapor transport and characterized using temperature dependent x-ray diffraction, Raman spectroscopy, and magnetization measurements. A structural phase transition occurs near 585 K, at which the Mo-Mo dimers present at room temperature are broken. A nearly regular honeycomb net of Mo is observed above the transition, and an optical phonon associated with the dimerization instability is identified in the Raman data and in first-principles calculations. The crystals are diamagnetic at room temperature in the dimerized state, and the magnetic susceptibility increases sharply at the structural transition. Moderately strong paramagnetism in the high-temperature structure indicates the presence of local moments on Mo. This is consistent with results of spin-polarized density functional theory calculations using the low- and high-temperature structures. Above the magnetostructural phase transition the magnetic susceptibility continues to increase gradually up to the maximum measurement temperature of 780 K, with a temperature dependence that suggests two-dimensional antiferromagnetic correlations.
The magnetic excitations in CoPS$_3$, a two-dimensional van der Waals (vdW) antiferromagnet with spin $S=3/2$ on a honeycomb lattice, has been measured using powder inelastic neutron scattering. Clear dispersive spin waves are observed with a large spin gap of ~13 meV. The magnon spectra were fitted using an $XXZ$-type $J_1-J_2-J_3$ Heisenberg Hamiltonian with a single-ion anisotropy assuming no magnetic exchange between the honeycomb layers. The best-fit parameters show ferromagnetic exchange $J_1=-2.08$ meV and $J_2=-0.26$ meV for the nearest and second-nearest neighbors and a sizeable antiferromagnetic exchange $J_3=4.21$ meV for the third-nearest neighbor with the strong easy-axis anisotropy $K=-2.06$ meV. The suitable fitting could only be achieved by the anisotropic $XXZ$-type Hamiltonian, in which the exchange interaction for the out-of-plane component is smaller than that for the in-plane one by a ratio $alpha=J_z/J_x=0.6$. Moreover, the absence of spin-orbit exciton around 30 meV indicates that Co$^{2+}$ ions in CoPS$_3$ have a $S=3/2$ state rather than a spin-orbital entangled $J_rm{eff}=1/2$ ground state. Our result directly shows that CoPS$_3$ is an experimental realization of the $XXZ$ model with a honeycomb lattice in 2D vdW magnets.
We report structural, physical properties and electronic structure of van der Waals (vdW) crystal VI3. Detailed analysis reveals that VI3 exhibits a structural transition from monoclinic C2/m to rhombohedral R-3 at Ts ~ 79 K, similar to CrX3 (X = Cl, Br, I). Below Ts, a long-range ferromagnetic (FM) transition emerges at Tc ~ 50 K. The local moment of V in VI3 is close to the high-spin state V3+ ion (S = 1). Theoretical calculation suggests that VI3 may be a Mott insulator with the band gap of about 0.84 eV. In addition, VI3 has a relative small interlayer binding energy and can be exfoliated easily down to few layers experimentally. Therefore, VI3 is a candidate of two-dimensional FM semiconductor. It also provides a novel platform to explore 2D magnetism and vdW heterostructures in S = 1 system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا