Do you want to publish a course? Click here

Principle-driven Fiber Transmission Model based on PINN Neural Network

264   0   0.0 ( 0 )
 Added by Yubin Zang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, a novel principle-driven fiber transmission model based on physical induced neural network (PINN) is proposed. Unlike data-driven models which regard fiber transmission problem as data regression tasks, this model views it as an equation solving problem. Instead of adopting input signals and output signals which are calculated by SSFM algorithm in advance before training, this principle-driven PINN based fiber model adopts frames of time and distance as its inputs and the corresponding real and imaginary parts of NLSE solutions as its outputs. By taking into account of pulses and signals before transmission as initial conditions and fiber physical principles as NLSE in the design of loss functions, this model will progressively learn the transmission rules. Therefore, it can be effectively trained without the data labels, referred as the pre-calculated signals after transmission in data-driven models. Due to this advantage, SSFM algorithm is no longer needed before the training of principle-driven fiber model which can save considerable time consumption. Through numerical demonstration, the results show that this principle-driven PINN based fiber model can handle the prediction tasks of pulse evolution, signal transmission and fiber birefringence for different transmission parameters of fiber telecommunications.



rate research

Read More

We propose a neural network model for MDG and optical SNR estimation in SDM transmission. We show that the proposed neural-network-based solution estimates MDG and SNR with high accuracy and low complexity from features extracted after DSP.
Physics-informed neural network (PINN) is a data-driven approach to solve equations. It is successful in many applications; however, the accuracy of the PINN is not satisfactory when it is used to solve multiscale equations. Homogenization is a way of approximating a multiscale equation by a homogenized equation without multiscale property; it includes solving cell problems and the homogenized equation. The cell problems are periodic; and we propose an oversampling strategy which greatly improves the PINN accuracy on periodic problems. The homogenized equation has constant or slow dependency coefficient and can also be solved by PINN accurately. We hence proposed a 3-step method to improve the PINN accuracy for solving multiscale problems with the help of the homogenization. We apply our method to solve three equations which represent three different homogenization. The results show that the proposed method greatly improves the PINN accuracy. Besides, we also find that the PINN aided homogenization may achieve better accuracy than the numerical methods driven homogenization; PINN hence is a potential alternative to implementing the homogenization.
The millimeter-wave (mm-wave) radio-over-fiber (RoF) systems have been widely studied as promising solutions to deliver high-speed wireless signals to end users, and neural networks have been studied to solve various linear and nonlinear impairments. However, high computation cost and large amounts of training data are required to effectively improve the system performance. In this paper, we propose and demonstrate highly computation efficient convolutional neural network (CNN) and binary convolutional neural network (BCNN) based decision schemes to solve these limitations. The proposed CNN and BCNN based decision schemes are demonstrated in a 5 Gbps 60 GHz RoF system for up to 20 km fiber distance. Compared with previously demonstrated neural networks, results show that the bit error rate (BER) performance and the computation intensive training process are improved. The number of training iterations needed is reduced by about 50 % and the amount of required training data is reduced by over 30 %. In addition, only one training is required for the entire measured received optical power range over 3.5 dB in the proposed CNN and BCNN schemes, to further reduce the computation cost of implementing neural networks decision schemes in mm-wave RoF systems.
The significant imbalance between power generation and load caused by severe disturbance may make the power system unable to maintain a steady frequency. If the post-disturbance dynamic frequency features can be predicted and emergency controls are appropriately taken, the risk of frequency instability will be greatly reduced. In this paper, a predictive algorithm for post-disturbance dynamic frequency features is proposed based on convolutional neural network (CNN) . The operation data before and immediately after disturbance is used to construct the input tensor data of CNN, with the dynamic frequency features of the power system after the disturbance as the output. The operation data of the power system such as generators unbalanced power has spatial distribution characteristics. The electrical distance is presented to describe the spatial correlation of power system nodes, and the t-SNE dimensionality reduction algorithm is used to map the high-dimensional distance information of nodes to the 2-D plane, thereby constructing the CNN input tensor to reflect spatial distribution of nodes operation data on 2-D plane. The CNN with deep network structure and local connectivity characteristics is adopted and the network parameters are trained by utilizing the backpropagation-gradient descent algorithm. The case study results on an improved IEEE 39-node system and an actual power grid in USA shows that the proposed method can predict the lowest frequency of power system after the disturbance accurately and quickly.
Non-reciprocal components, such as isolators and circulators, are critical to wireless communication and radar applications. Traditionally, non-reciprocal components have been implemented using ferrite materials, which exhibit non-reciprocity under the influence of an external magnetic field. However, ferrite materials cannot be integrated into IC fabrication processes, and consequently are bulky and expensive. In the recent past, there has been strong interest in achieving non-reciprocity in a non-magnetic IC-compatible fashion using spatio-temporal modulation. In this paper, we present a general approach to non-reciprocity based on switched transmission lines. Switched transmission lines enable broadband, lossless and compact non-reciprocity, and a wide range of non-reciprocal functionalities, including non-reciprocal phase shifters, ultra-broadband gyrators and isolators, frequency-conversion isolators, and high-linearity/high-frequency/ultra-broadband circulators. We present a detailed theoretical analysis of the various non-idealities that impact insertion loss and provide design guidelines. The theory is validated by experimental results from discrete-component-based gyrators and isolators, and a 25GHz circulator fabricated in 45nm SOI CMOS technology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا