No Arabic abstract
The millimeter-wave (mm-wave) radio-over-fiber (RoF) systems have been widely studied as promising solutions to deliver high-speed wireless signals to end users, and neural networks have been studied to solve various linear and nonlinear impairments. However, high computation cost and large amounts of training data are required to effectively improve the system performance. In this paper, we propose and demonstrate highly computation efficient convolutional neural network (CNN) and binary convolutional neural network (BCNN) based decision schemes to solve these limitations. The proposed CNN and BCNN based decision schemes are demonstrated in a 5 Gbps 60 GHz RoF system for up to 20 km fiber distance. Compared with previously demonstrated neural networks, results show that the bit error rate (BER) performance and the computation intensive training process are improved. The number of training iterations needed is reduced by about 50 % and the amount of required training data is reduced by over 30 %. In addition, only one training is required for the entire measured received optical power range over 3.5 dB in the proposed CNN and BCNN schemes, to further reduce the computation cost of implementing neural networks decision schemes in mm-wave RoF systems.
Binarized neural networks, or BNNs, show great promise in edge-side applications with resource limited hardware, but raise the concerns of reduced accuracy. Motivated by the complex neural networks, in this paper we introduce complex representation into the BNNs and propose Binary complex neural network -- a novel network design that processes binary complex inputs and weights through complex convolution, but still can harvest the extraordinary computation efficiency of BNNs. To ensure fast convergence rate, we propose novel BCNN based batch normalization function and weight initialization function. Experimental results on Cifar10 and ImageNet using state-of-the-art network models (e.g., ResNet, ResNetE and NIN) show that BCNN can achieve better accuracy compared to the original BNN models. BCNN improves BNN by strengthening its learning capability through complex representation and extending its applicability to complex-valued input data. The source code of BCNN will be released on GitHub.
In this paper, we study the self-healing problem of unmanned aerial vehicle (UAV) swarm network (USNET) that is required to quickly rebuild the communication connectivity under unpredictable external disruptions (UEDs). Firstly, to cope with the one-off UEDs, we propose a graph convolutional neural network (GCN) and find the recovery topology of the USNET in an on-line manner. Secondly, to cope with general UEDs, we develop a GCN based trajectory planning algorithm that can make UAVs rebuild the communication connectivity during the self-healing process. We also design a meta learning scheme to facilitate the on-line executions of the GCN. Numerical results show that the proposed algorithms can rebuild the communication connectivity of the USNET more quickly than the existing algorithms under both one-off UEDs and general UEDs. The simulation results also show that the meta learning scheme can not only enhance the performance of the GCN but also reduce the time complexity of the on-line executions.
In recent years, deep learning poses a deep technical revolution in almost every field and attracts great attentions from industry and academia. Especially, the convolutional neural network (CNN), one representative model of deep learning, achieves great successes in computer vision and natural language processing. However, simply or blindly applying CNN to the other fields results in lower training effects or makes it quite difficult to adjust the model parameters. In this poster, we propose a general methodology named V-CNN by introducing data visualizing for CNN. V-CNN introduces a data visualization model prior to CNN modeling to make sure the data after processing is fit for the features of images as well as CNN modeling. We apply V-CNN to the network intrusion detection problem based on a famous practical dataset: AWID. Simulation results confirm V-CNN significantly outperforms other studies and the recall rate of each invasion category is more than 99.8%.
In this paper, we propose a novel tensor graph convolutional neural network (TGCNN) to conduct convolution on factorizable graphs, for which here two types of problems are focused, one is sequential dynamic graphs and the other is cross-attribute graphs. Especially, we propose a graph preserving layer to memorize salient nodes of those factorized subgraphs, i.e. cross graph convolution and graph pooling. For cross graph convolution, a parameterized Kronecker sum operation is proposed to generate a conjunctive adjacency matrix characterizing the relationship between every pair of nodes across two subgraphs. Taking this operation, then general graph convolution may be efficiently performed followed by the composition of small matrices, which thus reduces high memory and computational burden. Encapsuling sequence graphs into a recursive learning, the dynamics of graphs can be efficiently encoded as well as the spatial layout of graphs. To validate the proposed TGCNN, experiments are conducted on skeleton action datasets as well as matrix completion dataset. The experiment results demonstrate that our method can achieve more competitive performance with the state-of-the-art methods.
In convolutional neural network (CNN), dropout cannot work well because dropped information is not entirely obscured in convolutional layers where features are correlated spatially. Except randomly discarding regions or channels, many approaches try to overcome this defect by dropping influential units. In this paper, we propose a non-random dropout method named FocusedDropout, aiming to make the network focus more on the target. In FocusedDropout, we use a simple but effective way to search for the target-related features, retain these features and discard others, which is contrary to the existing methods. We found that this novel method can improve network performance by making the network more target-focused. Besides, increasing the weight decay while using FocusedDropout can avoid the overfitting and increase accuracy. Experimental results show that even a slight cost, 10% of batches employing FocusedDropout, can produce a nice performance boost over the baselines on multiple datasets of classification, including CIFAR10, CIFAR100, Tiny Imagenet, and has a good versatility for different CNN models.