Do you want to publish a course? Click here

Zonal harmonics of solar magnetic field for solar cycle forecast

80   0   0.0 ( 0 )
 Added by Valery Pipin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

According to the scheme of action of the solar dynamo, the poloidal magnetic field can be considered a source of production of the toroidal magnetic field by the solar differential rotation. From the polar magnetic field proxies, it is natural to expect that solar Cycle 25 will be weak as recorded in sunspot data. We suggest that there are parameters of the zonal harmonics of the solar surface magnetic field, such as the magnitude of the $ell$=3 harmonic or the effective multipole index, that can be used as a reasonable addition to the polar magnetic field proxies. We discuss also some specific features of solar activity indices in Cycles 23 and 24.



rate research

Read More

139 - R. Howe , F. Hill , R. Komm 2018
The pattern of migrating zonal flow bands associated with the solar cycle, known as the torsional oscillation, has been monitored with continuous global helioseismic observations by the Global Oscillations Network Group, together with those made by the Michelson Doppler Imager onboard the Solar and Heliosepheric Observatory and its successor the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory, since 1995, giving us nearly two full solar cycles of observations. We report that the flows now show traces of the mid-latitude acceleration that is expected to become the main equatorward-moving branch of the zonal flow pattern for Cycle 25. Based on the current position of this branch, we speculate that the onset of widespread activity for Cycle 25 is unlikely to be earlier than the middle of 2019.
We compare spectra of the zonal harmonics of the large-scale magnetic field of the Sun using observation results and solar dynamo models. The main solar activity cycle as recorded in these tracers is a much more complicated phenomenon than the eigen solution of solar dynamo equations with the growth saturated by a back reaction of the dynamo-driven magnetic field on solar hydrodynamics. The nominal 11(22)-year cycle as recorded in each mode has a specific phase shift varying from cycle to cycle; the actual length of the cycle varies from one cycle to another and from tracer to tracer. Both the observation and the dynamo model show an exceptional role of the axisymmetric $ell_{5}$ mode. Its origin seems to be readily connected with the formation and evolution of sunspots on the solar surface. The results of observations and dynamo models show a good agreement for the low $ell_{1}$ and $ell_{3}$ modes. The results for these modes do not differ significantly for the axisymmetric and nonaxisymmetric models. Our findings support the idea that the sources of the solar dynamo arise as a result of both the distributed dynamo processes in the bulk of the convection zone and the surface magnetic activity.
The cyclic, enigmatic, and ubiquitous magnetism of the Sun provides the energy we need to survive and has the ability to destroy our technologically dependent civilization. Never before has understanding solar magnetism and forecasting its behavior been so relevant. Indeed, on a broader canvas, understanding solar magnetism is a gateway to understanding the evolution and activity of other stars - the Sun is an astrophysical Rosetta Stone. Despite the centuries of observation, the past century of precise characterization, and significant advances in theoretical and numerical modeling over the past several decades, we have broken the cypher of the Suns global-scale magnetism. Using a host of observables spanning 140 years we will revisit an observational concept, the extended solar cycle, (ESC) that came to the fore in the mid-1980s but almost completely disappeared from the common consciousness of the global solar physics less than a sunspot cycle later - it is unclear why. Using a recently identified solar fiducial time, the end (or termination) of a solar cycle, we employ superposed epoch analysis to identify the ESC as a mapping of the Suns fundamental magnetic activity cycle and also as a recurring spatio-temporal unit of solar evolution. The ESC is a pattern from which the spatio-temporal pattern, and numerical modulation, of sunspots is produced. This effort illustrates that the ESC is the manifestation of the Suns Hale Cycle. We will close by pointing out areas of investigation indicated by the pattern of the Hale Cycle that may permit the conversion from observational correspondence to fundamental physical processes and a leap forward in understanding solar activity.
The results of determinations of the azimuthal and meridional velocities by time-distance helioseismology from Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO) from May 2010 to September 2020 at latitudes from -60{deg} to +60{deg} and depths to about 19 Mm below the photosphere are used to analyze spatiotemporal variations of the solar differential rotation and meridional circulation. The pattern of torsional oscillations, or latitudinal belts of alternating `fast and `slow zonal flows migrating from high latitudes towards the equator, is found to extend in the time--latitude diagrams over the whole time interval. The oscillation period is comparable with a doubled solar-activity-cycle and can be described as an extended solar cycle. The zonal-velocity variations are related to the solar-activity level, the local-velocity increases corresponding to the sunspot-number increases and being localized at latitudes where the strongest magnetic fields are recorded. The dramatic growth of the zonal velocities in 2018 appears to be a precursor of the beginning of activity Cycle 25. The strong symmetrization of the zonal-velocity field by 2020 can be considered another precursor. The general pattern of poleward meridional flows is modulated by latitudinal variations that are similar to the extended-solar-cycle behavior of the zonal flows. During the activity maximum, these variations are superposed with a higher harmonic corresponding to meridional flows converging to the spot-formation latitudes. Our results indicate that variations of both the zonal and meridional flows exhibit the extended solar-cycle behavior, which is an intrinsic feature of the solar dynamo.
We propose a novel approach to reconstruct the surface magnetic helicity density on the Sun or sun-like stars. The magnetic vector potential is determined via decomposition of vector magnetic field measurements into toroidal and poloidal components. The method is verified using data from a non-axisymmetric dynamo model. We apply the method to vector field synoptic maps from Helioseismic and Magnetic Imager (HMI) onboard of Solar Dynamics Observatory (SDO) to study evolution of the magnetic helicity density during solar cycle 24. It is found that the mean helicity density of the non-axisymmetric magnetic field of the Sun evolves in a way which is similar to that reported for the current helicity density of the solar active regions. It has predominantly the negative sign in the northern hemisphere, and it is positive in the southern hemisphere. Also, the hemispheric helicity rule for the non-axisymmetric magnetic field showed the sign inversion at the end of cycle 24. Evolution of magnetic helicity density of large-scale axisymmetric magnetic field is different from that expected in dynamo theory. On one hand, the mean large- and small-scale components of magnetic helicity density display the hemispheric helicity rule of opposite sign at the beginning of cycle 24. However, later in the cycle, the two helicities exhibit the same sign in contrast with the theoretical expectations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا