No Arabic abstract
Recognizing spatial relations and reasoning about them is essential in multiple applications including navigation, direction giving and human-computer interaction in general. Spatial relations between objects can either be explicit -- expressed as spatial prepositions, or implicit -- expressed by spatial verbs such as moving, walking, shifting, etc. Both these, but implicit relations in particular, require significant common sense understanding. In this paper, we introduce the task of inferring implicit and explicit spatial relations between two entities in an image. We design a model that uses both textual and visual information to predict the spatial relations, making use of both positional and size information of objects and image embeddings. We contrast our spatial model with powerful language models and show how our modeling complements the power of these, improving prediction accuracy and coverage and facilitates dealing with unseen subjects, objects and relations.
Natural language processing has made significant inroads into learning the semantics of words through distributional approaches, however representations learnt via these methods fail to capture certain kinds of information implicit in the real world. In particular, spatial relations are encoded in a way that is inconsistent with human spatial reasoning and lacking invariance to viewpoint changes. We present a system capable of capturing the semantics of spatial relations such as behind, left of, etc from natural language. Our key contributions are a novel multi-modal objective based on generating images of scenes from their textual descriptions, and a new dataset on which to train it. We demonstrate that internal representations are robust to meaning preserving transformations of descriptions (paraphrase invariance), while viewpoint invariance is an emergent property of the system.
Spatial Reasoning from language is essential for natural language understanding. Supporting it requires a representation scheme that can capture spatial phenomena encountered in language as well as in images and videos. Existing spatial representations are not sufficient for describing spatial configurations used in complex tasks. This paper extends the capabilities of existing spatial representation languages and increases coverage of the semantic aspects that are needed to ground the spatial meaning of natural language text in the world. Our spatial relation language is able to represent a large, comprehensive set of spatial concepts crucial for reasoning and is designed to support the composition of static and dynamic spatial configurations. We integrate this language with the Abstract Meaning Representation(AMR) annotation schema and present a corpus annotated by this extended AMR. To exhibit the applicability of our representation scheme, we annotate text taken from diverse datasets and show how we extend the capabilities of existing spatial representation languages with the fine-grained decomposition of semantics and blend it seamlessly with AMRs of sentences and discourse representations as a whole.
Since visual perception can give rich information beyond text descriptions for world understanding, there has been increasing interest in leveraging visual grounding for language learning. Recently, vokenization has attracted attention by using the predictions of a text-to-image retrieval model as labels for language model supervision. Despite its success, the method suffers from approximation error of using finite image labels and the lack of vocabulary diversity of a small image-text dataset. To overcome these limitations, we present VidLanKD, a video-language knowledge distillation method for improving language understanding. We train a multi-modal teacher model on a video-text dataset, and then transfer its knowledge to a student language model with a text dataset. To avoid approximation error, we propose to use different knowledge distillation objectives. In addition, the use of a large-scale video-text dataset helps learn diverse and richer vocabularies. In our experiments, VidLanKD achieves consistent improvements over text-only language models and vokenization models, on several downstream language understanding tasks including GLUE, SQuAD, and SWAG. We also demonstrate the improved world knowledge, physical reasoning, and temporal reasoning capabilities of our model by evaluating on the GLUE-diagnostics, PIQA, and TRACIE datasets. Lastly, we present comprehensive ablation studies as well as visualizations of the learned text-to-video grounding results of our teacher and student language models. Our code and models are available at: https://github.com/zinengtang/VidLanKD
Humans are emotional creatures. Multiple modalities are often involved when we express emotions, whether we do so explicitly (e.g., facial expression, speech) or implicitly (e.g., text, image). Enabling machines to have emotional intelligence, i.e., recognizing, interpreting, processing, and simulating emotions, is becoming increasingly important. In this tutorial, we discuss several key aspects of multi-modal emotion recognition (MER). We begin with a brief introduction on widely used emotion representation models and affective modalities. We then summarize existing emotion annotation strategies and corresponding computational tasks, followed by the description of main challenges in MER. Furthermore, we present some representative approaches on representation learning of each affective modality, feature fusion of different affective modalities, classifier optimization for MER, and domain adaptation for MER. Finally, we outline several real-world applications and discuss some future directions.
Understanding sequential information is a fundamental task for artificial intelligence. Current neural networks attempt to learn spatial and temporal information as a whole, limited their abilities to represent large scale spatial representations over long-range sequences. Here, we introduce a new modeling strategy called Semi-Coupled Structure (SCS), which consists of deep neural networks that decouple the complex spatial and temporal concepts learning. Semi-Coupled Structure can learn to implicitly separate input information into independent parts and process these parts respectively. Experiments demonstrate that a Semi-Coupled Structure can successfully annotate the outline of an object in images sequentially and perform video action recognition. For sequence-to-sequence problems, a Semi-Coupled Structure can predict future meteorological radar echo images based on observed images. Taken together, our results demonstrate that a Semi-Coupled Structure has the capacity to improve the performance of LSTM-like models on large scale sequential tasks.