No Arabic abstract
Recent conditional image synthesis approaches provide high-quality synthesized images. However, it is still challenging to accurately adjust image contents such as the positions and orientations of objects, and synthesized images often have geometrically invalid contents. To provide users with rich controllability on synthesized images in the aspect of 3D geometry, we propose a novel approach to realistic-looking image synthesis based on a configurable 3D scene layout. Our approach takes a 3D scene with semantic class labels as input and trains a 3D scene painting network that synthesizes color values for the input 3D scene. With the trained painting network, realistic-looking images for the input 3D scene can be rendered and manipulated. To train the painting network without 3D color supervision, we exploit an off-the-shelf 2D semantic image synthesis method. In experiments, we show that our approach produces images with geometrically correct structures and supports geometric manipulation such as the change of the viewpoint and object poses as well as manipulation of the painting style.
Many image processing tasks can be formulated as translating images between two image domains, such as colorization, super resolution and conditional image synthesis. In most of these tasks, an input image may correspond to multiple outputs. However, current existing approaches only show very minor diversity of the outputs. In this paper, we present a novel approach to synthesize diverse realistic images corresponding to a semantic layout. We introduce a diversity loss objective, which maximizes the distance between synthesized image pairs and links the input noise to the semantic segments in the synthesized images. Thus, our approach can not only produce diverse images, but also allow users to manipulate the output images by adjusting the noise manually. Experimental results show that images synthesized by our approach are significantly more diverse than that of the current existing works and equipping our diversity loss does not degrade the reality of the base networks.
We present a single-image 3D face synthesis technique that can handle challenging facial expressions while recovering fine geometric details. Our technique employs expression analysis for proxy face geometry generation and combines supervised and unsupervised learning for facial detail synthesis. On proxy generation, we conduct emotion prediction to determine a new expression-informed proxy. On detail synthesis, we present a Deep Facial Detail Net (DFDN) based on Conditional Generative Adversarial Net (CGAN) that employs both geometry and appearance loss functions. For geometry, we capture 366 high-quality 3D scans from 122 different subjects under 3 facial expressions. For appearance, we use additional 20K in-the-wild face images and apply image-based rendering to accommodate lighting variations. Comprehensive experiments demonstrate that our framework can produce high-quality 3D faces with realistic details under challenging facial expressions.
We develop new representations and algorithms for three-dimensional (3D) object detection and spatial layout prediction in cluttered indoor scenes. We first propose a clouds of oriented gradient (COG) descriptor that links the 2D appearance and 3D pose of object categories, and thus accurately models how perspective projection affects perceived image gradients. To better represent the 3D visual styles of large objects and provide contextual cues to improve the detection of small objects, we introduce latent support surfaces. We then propose a Manhattan voxel representation which better captures the 3D room layout geometry of common indoor environments. Effective classification rules are learned via a latent structured prediction framework. Contextual relationships among categories and layout are captured via a cascade of classifiers, leading to holistic scene hypotheses that exceed the state-of-the-art on the SUN RGB-D database.
We present a new pipeline for holistic 3D scene understanding from a single image, which could predict object shapes, object poses, and scene layout. As it is a highly ill-posed problem, existing methods usually suffer from inaccurate estimation of both shapes and layout especially for the cluttered scene due to the heavy occlusion between objects. We propose to utilize the latest deep implicit representation to solve this challenge. We not only propose an image-based local structured implicit network to improve the object shape estimation, but also refine the 3D object pose and scene layout via a novel implicit scene graph neural network that exploits the implicit local object features. A novel physical violation loss is also proposed to avoid incorrect context between objects. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods in terms of object shape, scene layout estimation, and 3D object detection.
One major goal of vision is to infer physical models of objects, surfaces, and their layout from sensors. In this paper, we aim to interpret indoor scenes from one RGBD image. Our representation encodes the layout of orthogonal walls and the extent of objects, modeled with CAD-like 3D shapes. We parse both the visible and occluded portions of the scene and all observable objects, producing a complete 3D parse. Such a scene interpretation is useful for robotics and visual reasoning, but difficult to produce due to the well-known challenge of segmentation, the high degree of occlusion, and the diversity of objects in indoor scenes. We take a data-driven approach, generating sets of potential object regions, matching to regions in training images, and transferring and aligning associated 3D models while encouraging fit to observations and spatial consistency. We use support inference to aid interpretation and propose a retrieval scheme that uses convolutional neural networks (CNNs) to classify regions and retrieve objects with similar shapes. We demonstrate the performance of our method on our newly annotated NYUd v2 dataset with detailed 3D shapes.