Do you want to publish a course? Click here

Electroencephalogram Signal Processing with Independent Component Analysis and Cognitive Stress Classification using Convolutional Neural Networks

404   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Electroencephalogram (EEG) is the recording which is the result due to the activity of bio-electrical signals that is acquired from electrodes placed on the scalp. In Electroencephalogram signal(EEG) recordings, the signals obtained are contaminated predominantly by the Electrooculogram(EOG) signal. Since this artifact has higher magnitude compared to EEG signals, these noise signals have to be removed in order to have a better understanding regarding the functioning of a human brain for applications such as medical diagnosis. This paper proposes an idea of using Independent Component Analysis(ICA) along with cross-correlation to de-noise EEG signal. This is done by selecting the component based on the cross-correlation coefficient with a threshold value and reducing its effect instead of zeroing it out completely, thus reducing the information loss. The results of the recorded data show that this algorithm can eliminate the EOG signal artifact with little loss in EEG data. The denoising is verified by an increase in SNR value and the decrease in cross-correlation coefficient value. The denoised signals are used to train an Artificial Neural Network(ANN) which would examine the features of the input EEG signal and predict the stress levels of the individual.



rate research

Read More

In congested electromagnetic environments, cognitive radios require knowledge about other emitters in order to optimize their dynamic spectrum access strategy. Deep learning classification algorithms have been used to recognize the wireless signal standards of emitters with high accuracy, but are limited to classifying signal classes that appear in their training set. This diminishes the performance of deep learning classifiers deployed in the field because they cannot accurately identify signals from classes outside of the training set. In this paper, a convolution neural network based open set classifier is proposed with the ability to detect if signals are not from known classes by thresholding the output sigmoid activation. The open set classifier was trained on 4G LTE, 5G NR, IEEE 802.11ax, Bluetooth Low Energy 5.0, and Narrowband Internet-of-Things signals impaired with Rayleigh or Rician fading, AWGN, frequency offsets, and in-phase/quadrature imbalances. Then, the classifier was tested on OFDM, SC-FDMA, SC, AM, and FM signals, which did not appear in the training set classes. The closed set classifier achieves an average accuracy of 94.5% for known signals with SNRs greater than 0 dB, but by design, has a 0% accuracy detecting signals from unknown classes. On the other hand, the open set classifier retains an 86% accuracy for known signal classes, but can detect 95.5% of signals from unknown classes with SNRs greater than 0 dB.
104 - Ender Ozturk , Fatih Erden , 2020
This paper investigates the problem of classification of unmanned aerial vehicles (UAVs) from radio frequency (RF) fingerprints at the low signal-to-noise ratio (SNR) regime. We use convolutional neural networks (CNNs) trained with both RF time-series images and the spectrograms of 15 different off-the-shelf drone controller RF signals. When using time-series signal images, the CNN extracts features from the signal transient and envelope. As the SNR decreases, this approach fails dramatically because the information in the transient is lost in the noise, and the envelope is distorted heavily. In contrast to time-series representation of the RF signals, with spectrograms, it is possible to focus only on the desired frequency interval, i.e., 2.4 GHz ISM band, and filter out any other signal component outside of this band. These advantages provide a notable performance improvement over the time-series signals-based methods. To further increase the classification accuracy of the spectrogram-based CNN, we denoise the spectrogram images by truncating them to a limited spectral density interval. Creating a single model using spectrogram images of noisy signals and tuning the CNN model parameters, we achieve a classification accuracy varying from 92% to 100% for an SNR range from -10 dB to 30 dB, which significantly outperforms the existing approaches to our best knowledge.
122 - Ziyu Liu , Xiang Zhang 2021
Electrocardiography (ECG) signal is a highly applied measurement for individual heart condition, and much effort have been endeavored towards automatic heart arrhythmia diagnosis based on machine learning. However, traditional machine learning models require large investment of time and effort for raw data preprocessing and feature extraction, as well as challenged by poor classification performance. Here, we propose a novel deep learning model, named Attention-Based Convolutional Neural Networks (ABCNN) that taking advantage of CNN and multi-head attention, to directly work on the raw ECG signals and automatically extract the informative dependencies for accurate arrhythmia detection. To evaluate the proposed approach, we conduct extensive experiments over a benchmark ECG dataset. Our main task is to find the arrhythmia from normal heartbeats and, at the meantime, accurately recognize the heart diseases from five arrhythmia types. We also provide convergence analysis of ABCNN and intuitively show the meaningfulness of extracted representation through visualization. The experimental results show that the proposed ABCNN outperforms the widely used baselines, which puts one step closer to intelligent heart disease diagnosis system.
330 - Songyang Zhang , Qinwen Deng , 2021
Signal processing over single-layer graphs has become a mainstream tool owing to its power in revealing obscure underlying structures within data signals. For generally, many real-life datasets and systems are characterized by more complex interactions among distinct entities. Such complex interactions may represent multiple levels of interactions that are difficult to be modeled with a single layer graph and can instead be captured by multiple layers of graph connections. Such multilayer/multi-level data structure can be more naturally modeled and captured by a high-dimensional multi-layer network (MLN). This work generalizes traditional graph signal processing (GSP) over multilayer networks for analysis of such multilayer signal features and their interactions. We propose a tensor-based framework of this multilayer network signal processing (M-GSP) in this two-part series. Specially, Part I introduces the fundamentals of M-GSP and studies spectrum properties of MLN Fourier space. We further describe its connections to traditional digital signal processing and GSP. Part II focuses on several major tools within the M-GSP framework for signal processing and data analysis. We provide results to demonstrate the efficacy and benefits of applying multilayer networks and the M-GSP in practical scenarios.
There is a warning light for the loss of plant habitats worldwide that entails concerted efforts to conserve plant biodiversity. Thus, plant species classification is of crucial importance to address this environmental challenge. In recent years, there is a considerable increase in the number of studies related to plant taxonomy. While some researchers try to improve their recognition performance using novel approaches, others concentrate on computational optimization for their framework. In addition, a few studies are diving into feature extraction to gain significantly in terms of accuracy. In this paper, we propose an effective method for the leaf recognition problem. In our proposed approach, a leaf goes through some pre-processing to extract its refined color image, vein image, xy-projection histogram, handcrafted shape, texture features, and Fourier descriptors. These attributes are then transformed into a better representation by neural network-based encoders before a support vector machine (SVM) model is utilized to classify different leaves. Overall, our approach performs a state-of-the-art result on the Flavia leaf dataset, achieving the accuracy of 99.58% on test sets under random 10-fold cross-validation and bypassing the previous methods. We also release our codes (Scripts are available at https://github.com/dinhvietcuong1996/LeafRecognition) for contributing to the research community in the leaf classification problem.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا