Do you want to publish a course? Click here

ECG-Based Heart Arrhythmia Diagnosis Through Attentional Convolutional Neural Networks

123   0   0.0 ( 0 )
 Added by Ziyu Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Electrocardiography (ECG) signal is a highly applied measurement for individual heart condition, and much effort have been endeavored towards automatic heart arrhythmia diagnosis based on machine learning. However, traditional machine learning models require large investment of time and effort for raw data preprocessing and feature extraction, as well as challenged by poor classification performance. Here, we propose a novel deep learning model, named Attention-Based Convolutional Neural Networks (ABCNN) that taking advantage of CNN and multi-head attention, to directly work on the raw ECG signals and automatically extract the informative dependencies for accurate arrhythmia detection. To evaluate the proposed approach, we conduct extensive experiments over a benchmark ECG dataset. Our main task is to find the arrhythmia from normal heartbeats and, at the meantime, accurately recognize the heart diseases from five arrhythmia types. We also provide convergence analysis of ABCNN and intuitively show the meaningfulness of extracted representation through visualization. The experimental results show that the proposed ABCNN outperforms the widely used baselines, which puts one step closer to intelligent heart disease diagnosis system.



rate research

Read More

Cardiac arrhythmia is a prevalent and significant cause of morbidity and mortality among cardiac ailments. Early diagnosis is crucial in providing intervention for patients suffering from cardiac arrhythmia. Traditionally, diagnosis is performed by examination of the Electrocardiogram (ECG) by a cardiologist. This method of diagnosis is hampered by the lack of accessibility to expert cardiologists. For quite some time, signal processing methods had been used to automate arrhythmia diagnosis. However, these traditional methods require expert knowledge and are unable to model a wide range of arrhythmia. Recently, Deep Learning methods have provided solutions to performing arrhythmia diagnosis at scale. However, the black-box nature of these models prohibit clinical interpretation of cardiac arrhythmia. There is a dire need to correlate the obtained model outputs to the corresponding segments of the ECG. To this end, two methods are proposed to provide interpretability to the models. The first method is a novel application of Gradient-weighted Class Activation Map (Grad-CAM) for visualizing the saliency of the CNN model. In the second approach, saliency is derived by learning the input deletion mask for the LSTM model. The visualizations are provided on a model whose competence is established by comparisons against baselines. The results of model saliency not only provide insight into the prediction capability of the model but also aligns with the medical literature for the classification of cardiac arrhythmia.
Objectives: Atrial fibrillation (AF) is a common heart rhythm disorder associated with deadly and debilitating consequences including heart failure, stroke, poor mental health, reduced quality of life and death. Having an automatic system that diagnoses various types of cardiac arrhythmias would assist cardiologists to initiate appropriate preventive measures and to improve the analysis of cardiac disease. To this end, this paper introduces a new approach to detect and classify automatically cardiac arrhythmias in electrocardiograms (ECG) recordings. Methods: The proposed approach used a combination of Convolution Neural Networks (CNNs) and a sequence of Long Short-Term Memory (LSTM) units, with pooling, dropout and normalization techniques to improve their accuracy. The network predicted a classification at every 18th input sample and we selected the final prediction for classification. Results were cross-validated on the Physionet Challenge 2017 training dataset, which contains 8,528 single lead ECG recordings lasting from 9s to just over 60s. Results: Using the proposed structure and no explicit feature selection, 10-fold stratified cross-validation gave an overall F-measure of 0.83.10-0.015 on the held-out test data (mean-standard deviation over all folds) and 0.80 on the hidden dataset of the Challenge entry server.
Objective: A novel structure based on channel-wise attention mechanism is presented in this paper. Embedding with the proposed structure, an efficient classification model that accepts multi-lead electrocardiogram (ECG) as input is constructed. Methods: One-dimensional convolutional neural networks (CNN) have proven to be effective in pervasive classification tasks, enabling the automatic extraction of features while classifying targets. We implement the Residual connection and design a structure which can learn the weights from the information contained in different channels in the input feature map during the training process. An indicator named mean square deviation is introduced to monitor the performance of a particular model segment in the classification task on the two out of the five ECG classes. The data in the MIT-BIH arrhythmia database is used and a series of control experiments is conducted. Results: Utilizing both leads of the ECG signals as input to the neural network classifier can achieve better classification results than those from using single channel inputs in different application scenarios. Models embedded with the channel-wise attention structure always achieve better scores on sensitivity and precision than the plain Resnet models. The proposed model exceeds the performance of most of the state-of-the-art models in ventricular ectopic beats (VEB) classification, and achieves competitive scores for supraventricular ectopic beats (SVEB). Conclusion: Adopting more lead ECG signals as input can increase the dimensions of the input feature maps, helping to improve both the performance and generalization of the network model. Significance: Due to its end-to-end characteristics, and the extensible intrinsic for multi-lead heart diseases diagnosing, the proposed model can be used for the real-time ECG tracking of ECG waveforms for Holter or wearable devices.
We present a model for predicting electrocardiogram (ECG) abnormalities in short-duration 12-lead ECG signals which outperformed medical doctors on the 4th year of their cardiology residency. Such exams can provide a full evaluation of heart activity and have not been studied in previous end-to-end machine learning papers. Using the database of a large telehealth network, we built a novel dataset with more than 2 million ECG tracings, orders of magnitude larger than those used in previous studies. Moreover, our dataset is more realistic, as it consist of 12-lead ECGs recorded during standard in-clinics exams. Using this data, we trained a residual neural network with 9 convolutional layers to map 7 to 10 second ECG signals to 6 classes of ECG abnormalities. Future work should extend these results to cover a large range of ECG abnormalities, which could improve the accessibility of this diagnostic tool and avoid wrong diagnosis from medical doctors.
In this paper, we present a novel Image Fusion Model (IFM) for ECG heart-beat classification to overcome the weaknesses of existing machine learning techniques that rely either on manual feature extraction or direct utilization of 1D raw ECG signal. At the input of IFM, we first convert the heart beats of ECG into three different images using Gramian Angular Field (GAF), Recurrence Plot (RP) and Markov Transition Field (MTF) and then fuse these images to create a single imaging modality. We use AlexNet for feature extraction and classification and thus employ end to end deep learning. We perform experiments on PhysioNet MIT-BIH dataset for five different arrhythmias in accordance with the AAMI EC57 standard and on PTB diagnostics dataset for myocardial infarction (MI) classification. We achieved an state of an art results in terms of prediction accuracy, precision and recall.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا