Do you want to publish a course? Click here

Open Set Wireless Standard Classification Using Convolutional Neural Networks

79   0   0.0 ( 0 )
 Added by Samuel Shebert
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In congested electromagnetic environments, cognitive radios require knowledge about other emitters in order to optimize their dynamic spectrum access strategy. Deep learning classification algorithms have been used to recognize the wireless signal standards of emitters with high accuracy, but are limited to classifying signal classes that appear in their training set. This diminishes the performance of deep learning classifiers deployed in the field because they cannot accurately identify signals from classes outside of the training set. In this paper, a convolution neural network based open set classifier is proposed with the ability to detect if signals are not from known classes by thresholding the output sigmoid activation. The open set classifier was trained on 4G LTE, 5G NR, IEEE 802.11ax, Bluetooth Low Energy 5.0, and Narrowband Internet-of-Things signals impaired with Rayleigh or Rician fading, AWGN, frequency offsets, and in-phase/quadrature imbalances. Then, the classifier was tested on OFDM, SC-FDMA, SC, AM, and FM signals, which did not appear in the training set classes. The closed set classifier achieves an average accuracy of 94.5% for known signals with SNRs greater than 0 dB, but by design, has a 0% accuracy detecting signals from unknown classes. On the other hand, the open set classifier retains an 86% accuracy for known signal classes, but can detect 95.5% of signals from unknown classes with SNRs greater than 0 dB.



rate research

Read More

104 - Ender Ozturk , Fatih Erden , 2020
This paper investigates the problem of classification of unmanned aerial vehicles (UAVs) from radio frequency (RF) fingerprints at the low signal-to-noise ratio (SNR) regime. We use convolutional neural networks (CNNs) trained with both RF time-series images and the spectrograms of 15 different off-the-shelf drone controller RF signals. When using time-series signal images, the CNN extracts features from the signal transient and envelope. As the SNR decreases, this approach fails dramatically because the information in the transient is lost in the noise, and the envelope is distorted heavily. In contrast to time-series representation of the RF signals, with spectrograms, it is possible to focus only on the desired frequency interval, i.e., 2.4 GHz ISM band, and filter out any other signal component outside of this band. These advantages provide a notable performance improvement over the time-series signals-based methods. To further increase the classification accuracy of the spectrogram-based CNN, we denoise the spectrogram images by truncating them to a limited spectral density interval. Creating a single model using spectrogram images of noisy signals and tuning the CNN model parameters, we achieve a classification accuracy varying from 92% to 100% for an SNR range from -10 dB to 30 dB, which significantly outperforms the existing approaches to our best knowledge.
Electroencephalogram (EEG) is the recording which is the result due to the activity of bio-electrical signals that is acquired from electrodes placed on the scalp. In Electroencephalogram signal(EEG) recordings, the signals obtained are contaminated predominantly by the Electrooculogram(EOG) signal. Since this artifact has higher magnitude compared to EEG signals, these noise signals have to be removed in order to have a better understanding regarding the functioning of a human brain for applications such as medical diagnosis. This paper proposes an idea of using Independent Component Analysis(ICA) along with cross-correlation to de-noise EEG signal. This is done by selecting the component based on the cross-correlation coefficient with a threshold value and reducing its effect instead of zeroing it out completely, thus reducing the information loss. The results of the recorded data show that this algorithm can eliminate the EOG signal artifact with little loss in EEG data. The denoising is verified by an increase in SNR value and the decrease in cross-correlation coefficient value. The denoised signals are used to train an Artificial Neural Network(ANN) which would examine the features of the input EEG signal and predict the stress levels of the individual.
With recent rapid advances in photonic integrated circuits, it has been demonstrated that programmable photonic chips can be used to implement artificial neural networks. Convolutional neural networks (CNN) are a class of deep learning methods that have been highly successful in applications such as image classification and speech processing. We present an architecture to implement a photonic CNN using the Fourier transform property of integrated star couplers. We show, in computer simulation, high accuracy image classification using the MNIST dataset. We also model component imperfections in photonic CNN and show that the performance degradation can be recovered in a programmable chip. Our proposed architecture provides a large reduction in physical footprint compared to current implementations as it utilizes the natural advantages of optics and hence offers a scalable pathway towards integrated photonic deep learning processors.
Wireless signals contain transmitter specific features, which can be used to verify the identity of transmitters and assist in implementing an authentication and authorization system. Most recently, there has been wide interest in using deep learning for transmitter identification. However, the existing deep learning work has posed the problem as closed set classification, where a neural network classifies among a finite set of known transmitters. No matter how large this set is, it will not include all transmitters that exist. Malicious transmitters outside this closed set, once within communications range, can jeopardize the system security. In this paper, we propose a deep learning approach for transmitter authorization based on open set recognition. Our proposed approach identifies a set of authorized transmitters, while rejecting any other unseen transmitters by recognizing their signals as outliers. We propose three approaches for this problem and show their ability to reject signals from unauthorized transmitters on a dataset of WiFi captures. We consider the structure of training data needed, and we show that the accuracy improves by having signals from known unauthorized transmitters in the training set.
113 - Jin Zheng , Qing Gao , Yanxuan Lv 2021
At present, there are a large number of quantum neural network models to deal with Euclidean spatial data, while little research have been conducted on non-Euclidean spatial data. In this paper, we propose a novel quantum graph convolutional neural network (QGCN) model based on quantum parametric circuits and utilize the computing power of quantum systems to accomplish graph classification tasks in traditional machine learning. The proposed QGCN model has a similar architecture as the classical graph convolutional neural networks, which can illustrate the topology of the graph type data and efficiently learn the hidden layer representation of node features as well. Numerical simulation results on a graph dataset demonstrate that the proposed model can be effectively trained and has good performance in graph level classification tasks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا