No Arabic abstract
In contrast to offline working fashions, two research paradigms are devised for online learning: (1) Online Meta Learning (OML) learns good priors over model parameters (or learning to learn) in a sequential setting where tasks are revealed one after another. Although it provides a sub-linear regret bound, such techniques completely ignore the importance of learning with fairness which is a significant hallmark of human intelligence. (2) Online Fairness-Aware Learning. This setting captures many classification problems for which fairness is a concern. But it aims to attain zero-shot generalization without any task-specific adaptation. This therefore limits the capability of a model to adapt onto newly arrived data. To overcome such issues and bridge the gap, in this paper for the first time we proposed a novel online meta-learning algorithm, namely FFML, which is under the setting of unfairness prevention. The key part of FFML is to learn good priors of an online fair classification models primal and dual parameters that are associated with the models accuracy and fairness, respectively. The problem is formulated in the form of a bi-level convex-concave optimization. Theoretic analysis provides sub-linear upper bounds for loss regret and for violation of cumulative fairness constraints. Our experiments demonstrate the versatility of FFML by applying it to classification on three real-world datasets and show substantial improvements over the best prior work on the tradeoff between fairness and classification accuracy
Learning quickly is of great importance for machine intelligence deployed in online platforms. With the capability of transferring knowledge from learned tasks, meta-learning has shown its effectiveness in online scenarios by continuously updating the model with the learned prior. However, current online meta-learning algorithms are limited to learn a globally-shared meta-learner, which may lead to sub-optimal results when the tasks contain heterogeneous information that are distinct by nature and difficult to share. We overcome this limitation by proposing an online structured meta-learning (OSML) framework. Inspired by the knowledge organization of human and hierarchical feature representation, OSML explicitly disentangles the meta-learner as a meta-hierarchical graph with different knowledge blocks. When a new task is encountered, it constructs a meta-knowledge pathway by either utilizing the most relevant knowledge blocks or exploring new blocks. Through the meta-knowledge pathway, the model is able to quickly adapt to the new task. In addition, new knowledge is further incorporated into the selected blocks. Experiments on three datasets demonstrate the effectiveness and interpretability of our proposed framework in the context of both homogeneous and heterogeneous tasks.
Meta-learning has proven to be successful for few-shot learning across the regression, classification, and reinforcement learning paradigms. Recent approaches have adopted Bayesian interpretations to improve gradient-based meta-learners by quantifying the uncertainty of the post-adaptation estimates. Most of these works almost completely ignore the latent relationship between the covariate distribution $(p(x))$ of a task and the corresponding conditional distribution $p(y|x)$. In this paper, we identify the need to explicitly model the meta-distribution over the task covariates in a hierarchical Bayesian framework. We begin by introducing a graphical model that leverages the samples from the marginal $p(x)$ to better infer the posterior over the optimal parameters of the conditional distribution $(p(y|x))$ for each task. Based on this model we propose a computationally feasible meta-learning algorithm by introducing meaningful relaxations in our final objective. We demonstrate the gains of our algorithm over initialization based meta-learning baselines on popular classification benchmarks. Finally, to understand the potential benefit of modeling task covariates we further evaluate our method on a synthetic regression dataset.
The underlying assumption of many machine learning algorithms is that the training data and test data are drawn from the same distributions. However, the assumption is often violated in real world due to the sample selection bias between the training and test data. Previous research works focus on reweighing biased training data to match the test data and then building classification models on the reweighed training data. However, how to achieve fairness in the built classification models is under-explored. In this paper, we propose a framework for robust and fair learning under sample selection bias. Our framework adopts the reweighing estimation approach for bias correction and the minimax robust estimation approach for achieving robustness on prediction accuracy. Moreover, during the minimax optimization, the fairness is achieved under the worst case, which guarantees the models fairness on test data. We further develop two algorithms to handle sample selection bias when test data is both available and unavailable. We conduct experiments on two real-world datasets and the experimental results demonstrate its effectiveness in terms of both utility and fairness metrics.
Few-shot meta-learning methods consider the problem of learning new tasks from a small, fixed number of examples, by meta-learning across static data from a set of previous tasks. However, in many real world settings, it is more natural to view the problem as one of minimizing the total amount of supervision --- both the number of examples needed to learn a new task and the amount of data needed for meta-learning. Such a formulation can be studied in a sequential learning setting, where tasks are presented in sequence. When studying meta-learning in this online setting, a critical question arises: can meta-learning improve over the sample complexity and regret of standard empirical risk minimization methods, when considering both meta-training and adaptation together? The answer is particularly non-obvious for meta-learning algorithms with complex bi-level optimizations that may demand large amounts of meta-training data. To answer this question, we extend previous meta-learning algorithms to handle the variable-shot settings that naturally arise in sequential learning: from many-shot learning at the start, to zero-shot learning towards the end. On sequential learning problems, we find that meta-learning solves the full task set with fewer overall labels and achieves greater cumulative performance, compared to standard supervised methods. These results suggest that meta-learning is an important ingredient for building learning systems that continuously learn and improve over a sequence of problems.
Outlier ensemble methods have shown outstanding performance on the discovery of instances that are significantly different from the majority of the data. However, without the awareness of fairness, their applicability in the ethical scenarios, such as fraud detection and judiciary judgement system, could be degraded. In this paper, we propose to reduce the bias of the outlier ensemble results through a fairness-aware ensemble framework. Due to the lack of ground truth in the outlier detection task, the key challenge is how to mitigate the degradation in the detection performance with the improvement of fairness. To address this challenge, we define a distance measure based on the output of conventional outlier ensemble techniques to estimate the possible cost associated with detection performance degradation. Meanwhile, we propose a post-processing framework to tune the original ensemble results through a stacking process so that we can achieve a trade off between fairness and detection performance. Detection performance is measured by the area under ROC curve (AUC) while fairness is measured at both group and individual level. Experiments on eight public datasets are conducted. Results demonstrate the effectiveness of the proposed framework in improving fairness of outlier ensemble results. We also analyze the trade-off between AUC and fairness.