Do you want to publish a course? Click here

Online Structured Meta-learning

79   0   0.0 ( 0 )
 Added by Huaxiu Yao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Learning quickly is of great importance for machine intelligence deployed in online platforms. With the capability of transferring knowledge from learned tasks, meta-learning has shown its effectiveness in online scenarios by continuously updating the model with the learned prior. However, current online meta-learning algorithms are limited to learn a globally-shared meta-learner, which may lead to sub-optimal results when the tasks contain heterogeneous information that are distinct by nature and difficult to share. We overcome this limitation by proposing an online structured meta-learning (OSML) framework. Inspired by the knowledge organization of human and hierarchical feature representation, OSML explicitly disentangles the meta-learner as a meta-hierarchical graph with different knowledge blocks. When a new task is encountered, it constructs a meta-knowledge pathway by either utilizing the most relevant knowledge blocks or exploring new blocks. Through the meta-knowledge pathway, the model is able to quickly adapt to the new task. In addition, new knowledge is further incorporated into the selected blocks. Experiments on three datasets demonstrate the effectiveness and interpretability of our proposed framework in the context of both homogeneous and heterogeneous tasks.

rate research

Read More

In contrast to offline working fashions, two research paradigms are devised for online learning: (1) Online Meta Learning (OML) learns good priors over model parameters (or learning to learn) in a sequential setting where tasks are revealed one after another. Although it provides a sub-linear regret bound, such techniques completely ignore the importance of learning with fairness which is a significant hallmark of human intelligence. (2) Online Fairness-Aware Learning. This setting captures many classification problems for which fairness is a concern. But it aims to attain zero-shot generalization without any task-specific adaptation. This therefore limits the capability of a model to adapt onto newly arrived data. To overcome such issues and bridge the gap, in this paper for the first time we proposed a novel online meta-learning algorithm, namely FFML, which is under the setting of unfairness prevention. The key part of FFML is to learn good priors of an online fair classification models primal and dual parameters that are associated with the models accuracy and fairness, respectively. The problem is formulated in the form of a bi-level convex-concave optimization. Theoretic analysis provides sub-linear upper bounds for loss regret and for violation of cumulative fairness constraints. Our experiments demonstrate the versatility of FFML by applying it to classification on three real-world datasets and show substantial improvements over the best prior work on the tradeoff between fairness and classification accuracy
Few-shot meta-learning methods consider the problem of learning new tasks from a small, fixed number of examples, by meta-learning across static data from a set of previous tasks. However, in many real world settings, it is more natural to view the problem as one of minimizing the total amount of supervision --- both the number of examples needed to learn a new task and the amount of data needed for meta-learning. Such a formulation can be studied in a sequential learning setting, where tasks are presented in sequence. When studying meta-learning in this online setting, a critical question arises: can meta-learning improve over the sample complexity and regret of standard empirical risk minimization methods, when considering both meta-training and adaptation together? The answer is particularly non-obvious for meta-learning algorithms with complex bi-level optimizations that may demand large amounts of meta-training data. To answer this question, we extend previous meta-learning algorithms to handle the variable-shot settings that naturally arise in sequential learning: from many-shot learning at the start, to zero-shot learning towards the end. On sequential learning problems, we find that meta-learning solves the full task set with fewer overall labels and achieves greater cumulative performance, compared to standard supervised methods. These results suggest that meta-learning is an important ingredient for building learning systems that continuously learn and improve over a sequence of problems.
There has been rapidly growing interest in meta-learning as a method for increasing the flexibility and sample efficiency of reinforcement learning. One problem in this area of research, however, has been a scarcity of adequate benchmark tasks. In general, the structure underlying past benchmarks has either been too simple to be inherently interesting, or too ill-defined to support principled analysis. In the present work, we introduce a new benchmark for meta-RL research, which combines structural richness with structural transparency. Alchemy is a 3D video game, implemented in Unity, which involves a latent causal structure that is resampled procedurally from episode to episode, affording structure learning, online inference, hypothesis testing and action sequencing based on abstract domain knowledge. We evaluate a pair of powerful RL agents on Alchemy and present an in-depth analysis of one of these agents. Results clearly indicate a frank and specific failure of meta-learning, providing validation for Alchemy as a challenging benchmark for meta-RL. Concurrent with this report, we are releasing Alchemy as public resource, together with a suite of analysis tools and sample agent trajectories.
Deep reinforcement learning includes a broad family of algorithms that parameterise an internal representation, such as a value function or policy, by a deep neural network. Each algorithm optimises its parameters with respect to an objective, such as Q-learning or policy gradient, that defines its semantics. In this work, we propose an algorithm based on meta-gradient descent that discovers its own objective, flexibly parameterised by a deep neural network, solely from interactive experience with its environment. Over time, this allows the agent to learn how to learn increasingly effectively. Furthermore, because the objective is discovered online, it can adapt to changes over time. We demonstrate that the algorithm discovers how to address several important issues in RL, such as bootstrapping, non-stationarity, and off-policy learning. On the Atari Learning Environment, the meta-gradient algorithm adapts over time to learn with greater efficiency, eventually outperforming the median score of a strong actor-critic baseline.
66 - Qi Wang , Herke van Hoof 2021
Reinforcement learning is a promising paradigm for solving sequential decision-making problems, but low data efficiency and weak generalization across tasks are bottlenecks in real-world applications. Model-based meta reinforcement learning addresses these issues by learning dynamics and leveraging knowledge from prior experience. In this paper, we take a closer look at this framework, and propose a new Thompson-sampling based approach that consists of a new model to identify task dynamics together with an amortized policy optimization step. We show that our model, called a graph structured surrogate model (GSSM), outperforms state-of-the-art methods in predicting environment dynamics. Additionally, our approach is able to obtain high returns, while allowing fast execution during deployment by avoiding test time policy gradient optimization.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا