Do you want to publish a course? Click here

Structure and Interleavings of Relative Interlevel Set Cohomology

194   0   0.0 ( 0 )
 Added by Benedikt Fluhr
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The relative interlevel set cohomology (RISC) is an invariant of real-valued continuous functions closely related to the Mayer--Vietoris pyramid introduced by Carlsson, de Silva, and Morozov. We provide a structure theorem, which applies to the RISC if it is pointwise finite dimensional (pfd) or, equivalently, $q$-tame. Moreover, we provide the notion of an interleaving for RISC and we show that it is stable in the sense that any space with two functions that are $delta$-close induces a $delta$-interleaving of the corresponding relative interlevel set cohomologies.



rate research

Read More

169 - Frederic Chazal 2012
We give a self-contained treatment of the theory of persistence modules indexed over the real line. We give new proofs of the standard results. Persistence diagrams are constructed using measure theory. Linear algebra lemmas are simplified using a new notation for calculations on quiver representations. We show that the stringent finiteness conditions required by traditional methods are not necessary to prove the existence and stability of the persistence diagram. We introduce weaker hypotheses for taming persistence modules, which are met in practice and are strong enough for the theory still to work. The constructions and proofs enabled by our framework are, we claim, cleaner and simpler.
Suppose $k$ is a field of characteristic 2, and $n,mgeq 4$ powers of 2. Then the $A_infty$-structure of the group cohomology algebras $H^*(C_n,k)$ and $H^*(C_m,k)$ are well known. We give results characterizing an $A_infty$-structure on $H^*(C_ntimes C_m,k)$ including limits on non-vanishing low-arity operations and an infinite family of non-vanishing higher operations.
We establish a system of PDE, called open WDVV, that constrains the bulk-deformed superpotential and associated open Gromov-Witten invariants of a Lagrangian submanifold $L subset X$ with a bounding chain. Simultaneously, we define the quantum cohomo logy algebra of $X$ relative to $L$ and prove its associativity. We also define the relative quantum connection and prove it is flat. A wall-crossing formula is derived that allows the interchange of point-like boundary constraints and certain interior constraints in open Gromov-Witten invariants. Another result is a vanishing theorem for open Gromov-Witten invariants of homologically non-trivial Lagrangians with more than one point-like boundary constraint. In this case, the open Gromov-Witten invariants with one point-like boundary constraint are shown to recover certain closed invariants. From open WDVV and the wall-crossing formula, a system of recursive relations is derived that entirely determines the open Gromov-Witten invariants of $(X,L) = (mathbb{C}P^n, mathbb{R}P^n)$ with $n$ odd, defined in previous work of the authors. Thus, we obtain explicit formulas for enumerative invariants defined using the Fukaya-Oh-Ohta-Ono theory of bounding chains.
Building on work of Livernet and Richter, we prove that E_n-homology and E_n-cohomology of a commutative algebra with coefficients in a symmetric bimodule can be interpreted as functor homology and cohomology. Furthermore we show that the associated Yoneda algebra is trivial.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا