No Arabic abstract
Individual nitrogen vacancy (NV) color centers in diamond are versatile, spin-based quantum sensors. Coherently controlling the spin of NV centers using microwaves in a typical frequency range between 2.5 and 3.5 GHz is necessary for sensing applications. In this work, we present a stripline-based, planar, {Omega}-shaped microwave antenna that enables to reliably manipulate NV spins. We find an optimal antenna design using finite integral simulations. We fabricate our antennas on low-cost, transparent glass substrate. We demonstrate highly uniform microwave fields in areas of roughly 400 x 400 {mu}m^2 while realizing high Rabi frequencies of up to 10 MHz in an ensemble of NV centers.
Individual, luminescent point defects in solids so called color centers are atomic-sized quantum systems enabling sensing and imaging with nanoscale spatial resolution. In this overview, we introduce nanoscale sensing based on individual nitrogen vacancy (NV) centers in diamond. We discuss two central challenges of the field: First, the creation of highly-coherent, shallow NV centers less than 10 nm below the surface of single-crystal diamond. Second, the fabrication of tip-like photonic nanostructures that enable efficient fluorescence collection and can be used for scanning probe imaging based on color centers with nanoscale resolution.
Nitrogen-vacancy (NV) centers in millimeter-scale diamond samples were produced by irradiation and subsequent annealing under varied conditions. The optical and spin relaxation properties of these samples were characterized using confocal microscopy, visible and infrared absorption, and optically detected magnetic resonance. The sample with the highest NV- concentration, approximately 16 ppm = 2.8 x 10^{18} cm^{-3}, was prepared with no observable traces of neutrally-charged vacancy defects. The effective transverse spin relaxation time for this sample was T2* = 118(48) ns, predominately limited by residual paramagnetic nitrogen which was determined to have a concentration of 52(7) ppm. Under ideal conditions, the shot-noise limited sensitivity is projected to be ~150 fT/sqrt{Hz} for a 100 micron-scale magnetometer based on this sample. Other samples with NV- concentrations from .007 to 12 ppm and effective relaxation times ranging from 27 to 291 ns were prepared and characterized.
Symmetry considerations are used in presenting a model of the electronic structure and the associated dynamics of the nitrogen-vacancy center in diamond. The model accounts for the occurrence of optically induced spin polarization, for the change of emission level with spin polarization and for new measurements of transient emission. The rate constants given are in variance to those reported previously.
We designed a nanoscale light extractor (NLE) for efficient outcoupling and beaming of broadband light emitted by shallow, negatively charged nitrogen-vacancy (NV) centers in bulk diamond. The NLE consists of a patterned silicon layer on diamond and requires no etching of the diamond surface. Our design process is based on adjoint optimization using broadband time-domain simulations and yields structures that are inherently robust to positioning and fabrication errors. Our NLE functions like a transmission antenna for the NV center, enhancing the optical power extracted from an NV center positioned 10 nm below the diamond surface by a factor of more than 35, and beaming the light into a +/-30{deg} cone in the far field. This approach to light extraction can be readily adapted to other solid-state color centers.
High temporal stability and spin dynamics of individual nitrogen-vacancy (NV) centers in diamond crystals make them one of the most promising quantum emitters operating at room temperature. We demonstrate a chip-integrated cavity-coupled emission into propagating surface plasmon polariton (SPP) modes narrowing NV centers broad emission bandwidth with enhanced coupling efficiency. The cavity resonator consists of two distributed Bragg mirrors that are built at opposite sides of the coupled NV emitter and are integrated with a dielectric-loaded SPP waveguide (DLSPPW), using electron-beam lithography of hydrogen silsesquioxane resist deposited on silver-coated silicon substrates. A quality factor of ~ 70 for the cavity (full width at half maximum ~ 10 nm) with full tunability of the resonance wavelength is demonstrated. An up to 42-fold decay rate enhancement of the spontaneous emission at the cavity resonance is achieved, indicating high DLSPPW mode confinement.