Do you want to publish a course? Click here

Video Relation Detection via Tracklet based Visual Transformer

154   0   0.0 ( 0 )
 Added by Kaifeng Gao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Video Visual Relation Detection (VidVRD), has received significant attention of our community over recent years. In this paper, we apply the state-of-the-art video object tracklet detection pipeline MEGA and deepSORT to generate tracklet proposals. Then we perform VidVRD in a tracklet-based manner without any pre-cutting operations. Specifically, we design a tracklet-based visual Transformer. It contains a temporal-aware decoder which performs feature interactions between the tracklets and learnable predicate query embeddings, and finally predicts the relations. Experimental results strongly demonstrate the superiority of our method, which outperforms other methods by a large margin on the Video Relation Understanding (VRU) Grand Challenge in ACM Multimedia 2021. Codes are released at https://github.com/Dawn-LX/VidVRD-tracklets.



rate research

Read More

280 - Cheng Chi , Fangyun Wei , Han Hu 2020
Existing object detection frameworks are usually built on a single format of object/part representation, i.e., anchor/proposal rectangle boxes in RetinaNet and Faster R-CNN, center points in FCOS and RepPoints, and corner points in CornerNet. While these different representations usually drive the frameworks to perform well in different aspects, e.g., better classification or finer localization, it is in general difficult to combine these representations in a single framework to make good use of each strength, due to the heterogeneous or non-grid feature extraction by different representations. This paper presents an attention-based decoder module similar as that in Transformer~cite{vaswani2017attention} to bridge other representations into a typical object detector built on a single representation format, in an end-to-end fashion. The other representations act as a set of emph{key} instances to strengthen the main emph{query} representation features in the vanilla detectors. Novel techniques are proposed towards efficient computation of the decoder module, including a emph{key sampling} approach and a emph{shared location embedding} approach. The proposed module is named emph{bridging visual representations} (BVR). It can perform in-place and we demonstrate its broad effectiveness in bridging other representations into prevalent object detection frameworks, including RetinaNet, Faster R-CNN, FCOS and ATSS, where about $1.5sim3.0$ AP improvements are achieved. In particular, we improve a state-of-the-art framework with a strong backbone by about $2.0$ AP, reaching $52.7$ AP on COCO test-dev. The resulting network is named RelationNet++. The code will be available at https://github.com/microsoft/RelationNet2.
Video editing tools are widely used nowadays for digital design. Although the demand for these tools is high, the prior knowledge required makes it difficult for novices to get started. Systems that could follow natural language instructions to perform automatic editing would significantly improve accessibility. This paper introduces the language-based video editing (LBVE) task, which allows the model to edit, guided by text instruction, a source video into a target video. LBVE contains two features: 1) the scenario of the source video is preserved instead of generating a completely different video; 2) the semantic is presented differently in the target video, and all changes are controlled by the given instruction. We propose a Multi-Modal Multi-Level Transformer (M$^3$L-Transformer) to carry out LBVE. The M$^3$L-Transformer dynamically learns the correspondence between video perception and language semantic at different levels, which benefits both the video understanding and video frame synthesis. We build three new datasets for evaluation, including two diagnostic and one from natural videos with human-labeled text. Extensive experimental results show that M$^3$L-Transformer is effective for video editing and that LBVE can lead to a new field toward vision-and-language research.
Crowd estimation is a very challenging problem. The most recent study tries to exploit auditory information to aid the visual models, however, the performance is limited due to the lack of an effective approach for feature extraction and integration. The paper proposes a new audiovisual multi-task network to address the critical challenges in crowd counting by effectively utilizing both visual and audio inputs for better modalities association and productive feature extraction. The proposed network introduces the notion of auxiliary and explicit image patch-importance ranking (PIR) and patch-wise crowd estimate (PCE) information to produce a third (run-time) modality. These modalities (audio, visual, run-time) undergo a transformer-inspired cross-modality co-attention mechanism to finally output the crowd estimate. To acquire rich visual features, we propose a multi-branch structure with transformer-style fusion in-between. Extensive experimental evaluations show that the proposed scheme outperforms the state-of-the-art networks under all evaluation settings with up to 33.8% improvement. We also analyze and compare the vision-only variant of our network and empirically demonstrate its superiority over previous approaches.
Detecting abnormal activities in real-world surveillance videos is an important yet challenging task as the prior knowledge about video anomalies is usually limited or unavailable. Despite that many approaches have been developed to resolve this problem, few of them can capture the normal spatio-temporal patterns effectively and efficiently. Moreover, existing works seldom explicitly consider the local consistency at frame level and global coherence of temporal dynamics in video sequences. To this end, we propose Convolutional Transformer based Dual Discriminator Generative Adversarial Networks (CT-D2GAN) to perform unsupervised video anomaly detection. Specifically, we first present a convolutional transformer to perform future frame prediction. It contains three key components, i.e., a convolutional encoder to capture the spatial information of the input video clips, a temporal self-attention module to encode the temporal dynamics, and a convolutional decoder to integrate spatio-temporal features and predict the future frame. Next, a dual discriminator based adversarial training procedure, which jointly considers an image discriminator that can maintain the local consistency at frame-level and a video discriminator that can enforce the global coherence of temporal dynamics, is employed to enhance the future frame prediction. Finally, the prediction error is used to identify abnormal video frames. Thoroughly empirical studies on three public video anomaly detection datasets, i.e., UCSD Ped2, CUHK Avenue, and Shanghai Tech Campus, demonstrate the effectiveness of the proposed adversarial spatio-temporal modeling framework.
Autonomous highlight detection is crucial for enhancing the efficiency of video browsing on social media platforms. To attain this goal in a data-driven way, one may often face the situation where highlight annotations are not available on the target video category used in practice, while the supervision on another video category (named as source video category) is achievable. In such a situation, one can derive an effective highlight detector on target video category by transferring the highlight knowledge acquired from source video category to the target one. We call this problem cross-category video highlight detection, which has been rarely studied in previous works. For tackling such practical problem, we propose a Dual-Learner-based Video Highlight Detection (DL-VHD) framework. Under this framework, we first design a Set-based Learning module (SL-module) to improve the conventional pair-based learning by assessing the highlight extent of a video segment under a broader context. Based on such learning manner, we introduce two different learners to acquire the basic distinction of target category videos and the characteristics of highlight moments on source video category, respectively. These two types of highlight knowledge are further consolidated via knowledge distillation. Extensive experiments on three benchmark datasets demonstrate the superiority of the proposed SL-module, and the DL-VHD method outperforms five typical Unsupervised Domain Adaptation (UDA) algorithms on various cross-category highlight detection tasks. Our code is available at https://github.com/ChrisAllenMing/Cross_Category_Video_Highlight .
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا