No Arabic abstract
Crowd estimation is a very challenging problem. The most recent study tries to exploit auditory information to aid the visual models, however, the performance is limited due to the lack of an effective approach for feature extraction and integration. The paper proposes a new audiovisual multi-task network to address the critical challenges in crowd counting by effectively utilizing both visual and audio inputs for better modalities association and productive feature extraction. The proposed network introduces the notion of auxiliary and explicit image patch-importance ranking (PIR) and patch-wise crowd estimate (PCE) information to produce a third (run-time) modality. These modalities (audio, visual, run-time) undergo a transformer-inspired cross-modality co-attention mechanism to finally output the crowd estimate. To acquire rich visual features, we propose a multi-branch structure with transformer-style fusion in-between. Extensive experimental evaluations show that the proposed scheme outperforms the state-of-the-art networks under all evaluation settings with up to 33.8% improvement. We also analyze and compare the vision-only variant of our network and empirically demonstrate its superiority over previous approaches.
The mainstream crowd counting methods usually utilize the convolution neural network (CNN) to regress a density map, requiring point-level annotations. However, annotating each person with a point is an expensive and laborious process. During the testing phase, the point-level annotations are not considered to evaluate the counting accuracy, which means the point-level annotations are redundant. Hence, it is desirable to develop weakly-supervised counting methods that just rely on count level annotations, a more economical way of labeling. Current weakly-supervised counting methods adopt the CNN to regress a total count of the crowd by an image-to-count paradigm. However, having limited receptive fields for context modeling is an intrinsic limitation of these weakly-supervised CNN-based methods. These methods thus can not achieve satisfactory performance, limited applications in the real-word. The Transformer is a popular sequence-to-sequence prediction model in NLP, which contains a global receptive field. In this paper, we propose TransCrowd, which reformulates the weakly-supervised crowd counting problem from the perspective of sequence-to-count based on Transformer. We observe that the proposed TransCrowd can effectively extract the semantic crowd information by using the self-attention mechanism of Transformer. To the best of our knowledge, this is the first work to adopt a pure Transformer for crowd counting research. Experiments on five benchmark datasets demonstrate that the proposed TransCrowd achieves superior performance compared with all the weakly-supervised CNN-based counting methods and gains highly competitive counting performance compared with some popular fully-supervised counting methods. Code is available at https://github.com/dk-liang/TransCrowd.
In recent years, with the progress of deep learning technologies, crowd counting has been rapidly developed. In this work, we propose a simple yet effective crowd counting framework that is able to achieve the state-of-the-art performance on various crowded scenes. In particular, we first introduce a perspective-aware density map generation method that is able to produce ground-truth density maps from point annotations to train crowd counting model to accomplish superior performance than prior density map generation techniques. Besides, leveraging our density map generation method, we propose an iterative distillation algorithm to progressively enhance our model with identical network structures, without significantly sacrificing the dimension of the output density maps. In experiments, we demonstrate that, with our simple convolutional neural network architecture strengthened by our proposed training algorithm, our model is able to outperform or be comparable with the state-of-the-art methods. Furthermore, we also evaluate our density map generation approach and distillation algorithm in ablation studies.
State-of-the-art methods for counting people in crowded scenes rely on deep networks to estimate crowd density. They typically use the same filters over the whole image or over large image patches. Only then do they estimate local scale to compensate for perspective distortion. This is typically achieved by training an auxiliary classifier to select, for predefined image patches, the best kernel size among a limited set of choices. As such, these methods are not end-to-end trainable and restricted in the scope of context they can leverage. In this paper, we introduce an end-to-end trainable deep architecture that combines features obtained using multiple receptive field sizes and learns the importance of each such feature at each image location. In other words, our approach adaptively encodes the scale of the contextual information required to accurately predict crowd density. This yields an algorithm that outperforms state-of-the-art crowd counting methods, especially when perspective effects are strong.
While the performance of crowd counting via deep learning has been improved dramatically in the recent years, it remains an ingrained problem due to cluttered backgrounds and varying scales of people within an image. In this paper, we propose a Shallow feature based Dense Attention Network (SDANet) for crowd counting from still images, which diminishes the impact of backgrounds via involving a shallow feature based attention model, and meanwhile, captures multi-scale information via densely connecting hierarchical image features. Specifically, inspired by the observation that backgrounds and human crowds generally have noticeably different responses in shallow features, we decide to build our attention model upon shallow-feature maps, which results in accurate background-pixel detection. Moreover, considering that the most representative features of people across different scales can appear in different layers of a feature extraction network, to better keep them all, we propose to densely connect hierarchical image features of different layers and subsequently encode them for estimating crowd density. Experimental results on three benchmark datasets clearly demonstrate the superiority of SDANet when dealing with different scenarios. Particularly, on the challenging UCF CC 50 dataset, our method outperforms other existing methods by a large margin, as is evident from a remarkable 11.9% Mean Absolute Error (MAE) drop of our SDANet.
Significant progress on the crowd counting problem has been achieved by integrating larger context into convolutional neural networks (CNNs). This indicates that global scene context is essential, despite the seemingly bottom-up nature of the problem. This may be explained by the fact that context knowledge can adapt and improve local feature extraction to a given scene. In this paper, we therefore investigate the role of global context for crowd counting. Specifically, a pure transformer is used to extract features with global information from overlapping image patches. Inspired by classification, we add a context token to the input sequence, to facilitate information exchange with tokens corresponding to image patches throughout transformer layers. Due to the fact that transformers do not explicitly model the tried-and-true channel-wise interactions, we propose a token-attention module (TAM) to recalibrate encoded features through channel-wise attention informed by the context token. Beyond that, it is adopted to predict the total person count of the image through regression-token module (RTM). Extensive experiments demonstrate that our method achieves state-of-the-art performance on various datasets, including ShanghaiTech, UCF-QNRF, JHU-CROWD++ and NWPU. On the large-scale JHU-CROWD++ dataset, our method improves over the previous best results by 26.9% and 29.9% in terms of MAE and MSE, respectively.