Do you want to publish a course? Click here

CP-violating transport theory for Electroweak Baryogenesis with thermal corrections

63   0   0.0 ( 0 )
 Added by Kimmo Kainulainen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive CP-violating transport equations for fermions for electroweak baryogenesis from the CTP-formalism including thermal corrections at the one-loop level. We consider both the VEV-insertion approximation (VIA) and the semiclassical (SC) formalism. We show that the VIA-method is based on an {em assumption} that leads to an ill-defined source term containing a pinch singularity, whose regularisation by thermal effects leads to ambiguities including spurious ultraviolet and infrared divergences. We then carefully review the derivation of the semiclassical formalism and extend it to include thermal corrections. We present the semiclassical Boltzmann equations for thermal WKB-quasiparticles with source terms up to the second order in gradients that contain both dispersive and finite width corrections. We also show that the SC-method reproduces the current divergence equations and that a correct implementation of the Ficks law captures the semiclassical source term even with conserved total current $partial_mu j^mu = 0$. Our results show that the VIA-source term is not just ambiguous, but that it does not exist. Finally, we show that the collisional source terms reported earlier in the semiclassical literature are also spurious, and vanishes in a consistent calculation.



rate research

Read More

Recently we presented the upgrade of our code BSMPT for the calculation of the electroweak phase transition (EWPT) to BSMPT v2 which now includes the computation of the baryon asymmetry of the universe (BAU) in the CP-violating 2-Higgs-Doublet Model (C2HDM). In this paper we use {tt BSMPT v2} to investigate the size of the BAU that is obtained in the C2HDM with the two implemented approaches FH and VIA to derive the transport equations, by taking into account all relevant theoretical and experimental constraints. We identify similarities and differences in the results computed with the two methods. In particular, we analyse the dependence of the obtained BAU on the parameters relevant for successful baryogenesis. Our investigations allow us to pinpoint future directions for improvements both in the computation of the BAU and in possible avenues taken for model building.
In light of the Higgs boson discovery we reconsider generation of the baryon asymmetry in the non-minimal split Supersymmetry model with an additional singlet superfield in the Higgs sector. We find that successful baryogenesis during the first order electroweak phase transition is possible within phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos.
We study a mechanism that generates the baryon asymmetry of the Universe during a tachyonic electroweak phase transition. We utilize as sole source of CP violation an operator that was recently obtained from the Standard Model by integrating out the quarks.
78 - George W.-S. Hou 2017
We study electroweak baryogenesis driven by the top quark in two Higgs doublet model that allows flavor-changing neutral Higgs couplings. Taking Higgs sector couplings and the additional top Yukawa coupling $rho_{tt}$ to be $mathcal{O}$(1), one naturally has first order electroweak phase transition and sufficient $CP$ violation to fuel the cosmic baryon asymmetry. Even if $rho_{tt}$ vanishes, the favor-changing coupling $rho_{tc}$ can still achieve baryogenesis. Phenomenological consequences such as $tto ch$, $tau to mugamma$, electron electric dipole moment, $htogammagamma$, and $hhh$ coupling are discussed. The extra scalars $H^0$, $A^0$ and $H^pm$ are sub-TeV in mass, and can be searched for at the LHC.
138 - Anders Tranberg 2010
Using large scale real-time lattice simulations, we calculate the baryon asymmetry generated at a fast, cold electroweak symmetry breaking transition. CP-violation is provided by the leading effective bosonic term resulting from integrating out the fermions in the Minimal Standard Model at zero temperature, and performing a covariant gradient expansion [1]. This is an extension of the work presented in [2]. The numerical implementation is described in detail, and we address issues specifically related to using this CP-violating term in the context of Cold Electroweak Baryogenesis. The results support the conclusion of [2], that Standard Model CP-violation may be able to reproduce the observed baryon asymmetry in the Universe in the context of Cold Electroweak Baryogenesis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا