Do you want to publish a course? Click here

Split NMSSM with electroweak baryogenesis

65   0   0.0 ( 0 )
 Added by Sergei Demidov
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In light of the Higgs boson discovery we reconsider generation of the baryon asymmetry in the non-minimal split Supersymmetry model with an additional singlet superfield in the Higgs sector. We find that successful baryogenesis during the first order electroweak phase transition is possible within phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos.



rate research

Read More

We calculate the baryon asymmetry of the Universe in the Z3-invariant Next-to-Minimal Supersymmetric Standard Model where the interactions of the singlino provide the necessary source of charge and parity violation. Using the closed time path formalism, we derive and solve transport equations for the cases where the singlet acquires a vacuum expectation value (VEV) before and during the electroweak phase transition. We perform a detailed scan to show how the baryon asymmetry varies throughout the relevant parameter space. Our results show that the case where the singlet acquires a VEV during the electroweak phase transition typically generates a larger baryon asymmetry, although we expect that the case where the singlet acquires a VEV first is far more common for any model in which parameters unify at a high scale. Finally, we examine the dependence of the baryon asymmetry on the three-body interactions involving gauge singlets.
62 - Kimmo Kainulainen 2021
We derive CP-violating transport equations for fermions for electroweak baryogenesis from the CTP-formalism including thermal corrections at the one-loop level. We consider both the VEV-insertion approximation (VIA) and the semiclassical (SC) formalism. We show that the VIA-method is based on an {em assumption} that leads to an ill-defined source term containing a pinch singularity, whose regularisation by thermal effects leads to ambiguities including spurious ultraviolet and infrared divergences. We then carefully review the derivation of the semiclassical formalism and extend it to include thermal corrections. We present the semiclassical Boltzmann equations for thermal WKB-quasiparticles with source terms up to the second order in gradients that contain both dispersive and finite width corrections. We also show that the SC-method reproduces the current divergence equations and that a correct implementation of the Ficks law captures the semiclassical source term even with conserved total current $partial_mu j^mu = 0$. Our results show that the VIA-source term is not just ambiguous, but that it does not exist. Finally, we show that the collisional source terms reported earlier in the semiclassical literature are also spurious, and vanishes in a consistent calculation.
We re-evaluate the status of supersonic electroweak baryogenesis using a generalized fluid Ansatz for the non-equilibrium distribution functions. Instead of truncating the expansion to first order in momentum, we allow for higher order terms as well, including up to 21 fluctuations. The collision terms are computed analytically at leading-log accuracy. We also point out inconsistencies in the standard treatments of transport in electroweak baryogenesis, arguing that one cannot do without specifying an Ansatz for the distribution function. We present the first analysis of baryogenesis using the fluid approximation to higher orders. Our results support the recent findings that baryogenesis may indeed be possible even in the presence of supersonic wall velocities.
We investigate if the CP violation necessary for successful electroweak baryogenesis may be sourced by the neutrino Yukawa couplings. In particular, we consider an electroweak scale Seesaw realization with sizable Yukawas where the new neutrino singlets form (pseudo)-Dirac pairs, as in the linear or inverse Seesaw variants. We find that the baryon asymmetry obtained strongly depends on how the neutrino masses vary within the bubble walls. Moreover, we also find that flavour effects critically impact the final asymmetry obtained and that, taking them into account, the observed value may be obtained in some regions of the parameter space. This source of CP violation naturally avoids the strong constraints from electric dipole moments and links the origin of the baryon asymmetry of the Universe with the mechanism underlying neutrino masses. Interestingly, the mixing of the active and heavy neutrinos needs to be sizable and could be probed at the LHC or future collider experiments.
Conventional scenarios of electroweak (EW) baryogenesis are strongly constrained by experimental searches for CP violation beyond the SM. We propose an alternative scenario where the EW phase transition and baryogenesis occur at temperatures of the order of a new physics threshold $Lambda$ far above the Fermi scale, say, in the $100-1000$ TeV range. This way the needed new sources of CP-violation, together with possible associated flavor-violating effects, decouple from low energy observables. The key ingredient is a new CP- and flavor-conserving sector at the Fermi scale that ensures the EW symmetry remains broken and sphalerons suppressed at all temperatures below $Lambda$. We analyze a minimal incarnation based on a linear $O(N)$ model. We identify a specific large-$N$ limit where the effects of the new sector are vanishingly small at zero temperature while being significant at finite temperature. This crucially helps the construction of realistic models. A number of accidental factors, ultimately related to the size of the relevant SM couplings, force $N$ to be above $sim 100$. Such a large $N$ may seem bizarre, but it does affect the simplicity of the model and in fact it allows us to carry out a consistent re-summation of the leading contributions to the thermal effective potential. Extensions of the SM Higgs sector can be compatible with smaller values $Nsim 20-30$. Collider signatures are all parametrically suppressed by inverse powers of $N$ and may be challenging to probe, but present constraints from direct dark matter searches cannot be accommodated in the minimal model. We discuss various extensions that satisfy all current bounds. One of these involves a new gauge force confining at scales between $sim1$ GeV and the weak scale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا