No Arabic abstract
A long-standing goal in computer vision is to capture, model, and realistically synthesize human behavior. Specifically, by learning from data, our goal is to enable virtual humans to navigate within cluttered indoor scenes and naturally interact with objects. Such embodied behavior has applications in virtual reality, computer games, and robotics, while synthesized behavior can be used as a source of training data. This is challenging because real human motion is diverse and adapts to the scene. For example, a person can sit or lie on a sofa in many places and with varying styles. It is necessary to model this diversity when synthesizing virtual humans that realistically perform human-scene interactions. We present a novel data-driven, stochastic motion synthesis method that models different styles of performing a given action with a target object. Our method, called SAMP, for Scene-Aware Motion Prediction, generalizes to target objects of various geometries while enabling the character to navigate in cluttered scenes. To train our method, we collected MoCap data covering various sitting, lying down, walking, and running styles. We demonstrate our method on complex indoor scenes and achieve superior performance compared to existing solutions. Our code and data are available for research at https://samp.is.tue.mpg.de.
We revisit human motion synthesis, a task useful in various real world applications, in this paper. Whereas a number of methods have been developed previously for this task, they are often limited in two aspects: focusing on the poses while leaving the location movement behind, and ignoring the impact of the environment on the human motion. In this paper, we propose a new framework, with the interaction between the scene and the human motion taken into account. Considering the uncertainty of human motion, we formulate this task as a generative task, whose objective is to generate plausible human motion conditioned on both the scene and the human initial position. This framework factorizes the distribution of human motions into a distribution of movement trajectories conditioned on scenes and that of body pose dynamics conditioned on both scenes and trajectories. We further derive a GAN based learning approach, with discriminators to enforce the compatibility between the human motion and the contextual scene as well as the 3D to 2D projection constraints. We assess the effectiveness of the proposed method on two challenging datasets, which cover both synthetic and real world environments.
Human movement is goal-directed and influenced by the spatial layout of the objects in the scene. To plan future human motion, it is crucial to perceive the environment -- imagine how hard it is to navigate a new room with lights off. Existing works on predicting human motion do not pay attention to the scene context and thus struggle in long-term prediction. In this work, we propose a novel three-stage framework that exploits scene context to tackle this task. Given a single scene image and 2D pose histories, our method first samples multiple human motion goals, then plans 3D human paths towards each goal, and finally predicts 3D human pose sequences following each path. For stable training and rigorous evaluation, we contribute a diverse synthetic dataset with clean annotations. In both synthetic and real datasets, our method shows consistent quantitative and qualitative improvements over existing methods.
Human motion prediction aims to forecast future human poses given a prior pose sequence. The discontinuity of the predicted motion and the performance deterioration in long-term horizons are still the main challenges encountered in current literature. In this work, we tackle these issues by using a compact manifold-valued representation of human motion. Specifically, we model the temporal evolution of the 3D human poses as trajectory, what allows us to map human motions to single points on a sphere manifold. To learn these non-Euclidean representations, we build a manifold-aware Wasserstein generative adversarial model that captures the temporal and spatial dependencies of human motion through different losses. Extensive experiments show that our approach outperforms the state-of-the-art on CMU MoCap and Human 3.6M datasets. Our qualitative results show the smoothness of the predicted motions.
Forecasting human trajectories is critical for tasks such as robot crowd navigation and autonomous driving. Modeling social interactions is of great importance for accurate group-wise motion prediction. However, most existing methods do not consider information about coherence within the crowd, but rather only pairwise interactions. In this work, we propose a novel framework, coherent motion aware graph convolutional network (CoMoGCN), for trajectory prediction in crowded scenes with group constraints. First, we cluster pedestrian trajectories into groups according to motion coherence. Then, we use graph convolutional networks to aggregate crowd information efficiently. The CoMoGCN also takes advantage of variational autoencoders to capture the multimodal nature of the human trajectories by modeling the distribution. Our method achieves state-of-the-art performance on several different trajectory prediction benchmarks, and the best average performance among all benchmarks considered.
Motion prediction of vehicles is critical but challenging due to the uncertainties in complex environments and the limited visibility caused by occlusions and limited sensor ranges. In this paper, we study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving. Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map that indicates the earliest time when each location can be occupied by either seen and unseen vehicles. The ability to predict unseen vehicles is critical for safety in autonomous driving. To tackle this challenging task, we propose a safety-aware deep learning model with three new loss functions to predict the earliest occupancy map. Experiments on the large-scale autonomous driving nuScenes dataset show that our proposed model significantly outperforms the state-of-the-art baselines on the safety-aware motion prediction task. To the best of our knowledge, our approach is the first one that can predict the existence of unseen vehicles in most cases. Project page at {url{https://github.com/xrenaa/Safety-Aware-Motion-Prediction}}.