Do you want to publish a course? Click here

Scene-aware Generative Network for Human Motion Synthesis

106   0   0.0 ( 0 )
 Added by Jingbo Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We revisit human motion synthesis, a task useful in various real world applications, in this paper. Whereas a number of methods have been developed previously for this task, they are often limited in two aspects: focusing on the poses while leaving the location movement behind, and ignoring the impact of the environment on the human motion. In this paper, we propose a new framework, with the interaction between the scene and the human motion taken into account. Considering the uncertainty of human motion, we formulate this task as a generative task, whose objective is to generate plausible human motion conditioned on both the scene and the human initial position. This framework factorizes the distribution of human motions into a distribution of movement trajectories conditioned on scenes and that of body pose dynamics conditioned on both scenes and trajectories. We further derive a GAN based learning approach, with discriminators to enforce the compatibility between the human motion and the contextual scene as well as the 3D to 2D projection constraints. We assess the effectiveness of the proposed method on two challenging datasets, which cover both synthetic and real world environments.



rate research

Read More

Synthesis of long-term human motion skeleton sequences is essential to aid human-centric video generation with potential applications in Augmented Reality, 3D character animations, pedestrian trajectory prediction, etc. Long-term human motion synthesis is a challenging task due to multiple factors like, long-term temporal dependencies among poses, cyclic repetition across poses, bi-directional and multi-scale dependencies among poses, variable speed of actions, and a large as well as partially overlapping space of temporal pose variations across multiple class/types of human activities. This paper aims to address these challenges to synthesize a long-term (> 6000 ms) human motion trajectory across a large variety of human activity classes (>50). We propose a two-stage activity generation method to achieve this goal, where the first stage deals with learning the long-term global pose dependencies in activity sequences by learning to synthesize a sparse motion trajectory while the second stage addresses the generation of dense motion trajectories taking the output of the first stage. We demonstrate the superiority of the proposed method over SOTA methods using various quantitative evaluation metrics on publicly available datasets.
Generating good quality and geometrically plausible synthetic images of humans with the ability to control appearance, pose and shape parameters, has become increasingly important for a variety of tasks ranging from photo editing, fashion virtual try-on, to special effects and image compression. In this paper, we propose HUSC, a HUman Synthesis and Scene Compositing framework for the realistic synthesis of humans with different appearance, in novel poses and scenes. Central to our formulation is 3d reasoning for both people and scenes, in order to produce realistic collages, by correctly modeling perspective effects and occlusion, by taking into account scene semantics and by adequately handling relative scales. Conceptually our framework consists of three components: (1) a human image synthesis model with controllable pose and appearance, based on a parametric representation, (2) a person insertion procedure that leverages the geometry and semantics of the 3d scene, and (3) an appearance compositing process to create a seamless blending between the colors of the scene and the generated human image, and avoid visual artifacts. The performance of our framework is supported by both qualitative and quantitative results, in particular state-of-the art synthesis scores for the DeepFashion dataset.
A long-standing goal in computer vision is to capture, model, and realistically synthesize human behavior. Specifically, by learning from data, our goal is to enable virtual humans to navigate within cluttered indoor scenes and naturally interact with objects. Such embodied behavior has applications in virtual reality, computer games, and robotics, while synthesized behavior can be used as a source of training data. This is challenging because real human motion is diverse and adapts to the scene. For example, a person can sit or lie on a sofa in many places and with varying styles. It is necessary to model this diversity when synthesizing virtual humans that realistically perform human-scene interactions. We present a novel data-driven, stochastic motion synthesis method that models different styles of performing a given action with a target object. Our method, called SAMP, for Scene-Aware Motion Prediction, generalizes to target objects of various geometries while enabling the character to navigate in cluttered scenes. To train our method, we collected MoCap data covering various sitting, lying down, walking, and running styles. We demonstrate our method on complex indoor scenes and achieve superior performance compared to existing solutions. Our code and data are available for research at https://samp.is.tue.mpg.de.
This paper proposes a human-aware deblurring model that disentangles the motion blur between foreground (FG) humans and background (BG). The proposed model is based on a triple-branch encoder-decoder architecture. The first two branches are learned for sharpening FG humans and BG details, respectively; while the third one produces global, harmonious results by comprehensively fusing multi-scale deblurring information from the two domains. The proposed model is further endowed with a supervised, human-aware attention mechanism in an end-to-end fashion. It learns a soft mask that encodes FG human information and explicitly drives the FG/BG decoder-branches to focus on their specific domains. To further benefit the research towards Human-aware Image Deblurring, we introduce a large-scale dataset, named HIDE, which consists of 8,422 blurry and sharp image pairs with 65,784 densely annotated FG human bounding boxes. HIDE is specifically built to span a broad range of scenes, human object sizes, motion patterns, and background complexities. Extensive experiments on public benchmarks and our dataset demonstrate that our model performs favorably against the state-of-the-art motion deblurring methods, especially in capturing semantic details.
We present a deep generative scene modeling technique for indoor environments. Our goal is to train a generative model using a feed-forward neural network that maps a prior distribution (e.g., a normal distribution) to the distribution of primary objects in indoor scenes. We introduce a 3D object arrangement representation that models the locations and orientations of objects, based on their size and shape attributes. Moreover, our scene representation is applicable for 3D objects with different multiplicities (repetition counts), selected from a database. We show a principled way to train this model by combining discriminator losses for both a 3D object arrangement representation and a 2D image-based representation. We demonstrate the effectiveness of our scene representation and the deep learning method on benchmark datasets. We also show the applications of this generative model in scene interpolation and scene completion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا