No Arabic abstract
In this paper, we propose a talking face generation method that takes an audio signal as input and a short target video clip as reference, and synthesizes a photo-realistic video of the target face with natural lip motions, head poses, and eye blinks that are in-sync with the input audio signal. We note that the synthetic face attributes include not only explicit ones such as lip motions that have high correlations with speech, but also implicit ones such as head poses and eye blinks that have only weak correlation with the input audio. To model such complicated relationships among different face attributes with input audio, we propose a FACe Implicit Attribute Learning Generative Adversarial Network (FACIAL-GAN), which integrates the phonetics-aware, context-aware, and identity-aware information to synthesize the 3D face animation with realistic motions of lips, head poses, and eye blinks. Then, our Rendering-to-Video network takes the rendered face images and the attention map of eye blinks as input to generate the photo-realistic output video frames. Experimental results and user studies show our method can generate realistic talking face videos with not only synchronized lip motions, but also natural head movements and eye blinks, with better qualities than the results of state-of-the-art methods.
Existing face super-resolution (SR) methods mainly assume the input image to be noise-free. Their performance degrades drastically when applied to real-world scenarios where the input image is always contaminated by noise. In this paper, we propose a Facial Attribute Capsules Network (FACN) to deal with the problem of high-scale super-resolution of noisy face image. Capsule is a group of neurons whose activity vector models different properties of the same entity. Inspired by the concept of capsule, we propose an integrated representation model of facial information, which named Facial Attribute Capsule (FAC). In the SR processing, we first generated a group of FACs from the input LR face, and then reconstructed the HR face from this group of FACs. Aiming to effectively improve the robustness of FAC to noise, we generate FAC in semantic, probabilistic and facial attributes manners by means of integrated learning strategy. Each FAC can be divided into two sub-capsules: Semantic Capsule (SC) and Probabilistic Capsule (PC). Them describe an explicit facial attribute in detail from two aspects of semantic representation and probability distribution. The group of FACs model an image as a combination of facial attribute information in the semantic space and probabilistic space by an attribute-disentangling way. The diverse FACs could better combine the face prior information to generate the face images with fine-grained semantic attributes. Extensive benchmark experiments show that our method achieves superior hallucination results and outperforms state-of-the-art for very low resolution (LR) noise face image super resolution.
We devise a cascade GAN approach to generate talking face video, which is robust to different face shapes, view angles, facial characteristics, and noisy audio conditions. Instead of learning a direct mapping from audio to video frames, we propose first to transfer audio to high-level structure, i.e., the facial landmarks, and then to generate video frames conditioned on the landmarks. Compared to a direct audio-to-image approach, our cascade approach avoids fitting spurious correlations between audiovisual signals that are irrelevant to the speech content. We, humans, are sensitive to temporal discontinuities and subtle artifacts in video. To avoid those pixel jittering problems and to enforce the network to focus on audiovisual-correlated regions, we propose a novel dynamically adjustable pixel-wise loss with an attention mechanism. Furthermore, to generate a sharper image with well-synchronized facial movements, we propose a novel regression-based discriminator structure, which considers sequence-level information along with frame-level information. Thoughtful experiments on several datasets and real-world samples demonstrate significantly better results obtained by our method than the state-of-the-art methods in both quantitative and qualitative comparisons.
We propose a self-supervised framework for learning facial attributes by simply watching videos of a human face speaking, laughing, and moving over time. To perform this task, we introduce a network, Facial Attributes-Net (FAb-Net), that is trained to embed multiple frames from the same video face-track into a common low-dimensional space. With this approach, we make three contributions: first, we show that the network can leverage information from multiple source frames by predicting confidence/attention masks for each frame; second, we demonstrate that using a curriculum learning regime improves the learned embedding; finally, we demonstrate that the network learns a meaningful face embedding that encodes information about head pose, facial landmarks and facial expression, i.e. facial attributes, without having been supervised with any labelled data. We are comparable or superior to state-of-the-art self-supervised methods on these tasks and approach the performance of supervised methods.
Speech-driven facial animation is useful for a variety of applications such as telepresence, chatbots, etc. The necessary attributes of having a realistic face animation are 1) audio-visual synchronization (2) identity preservation of the target individual (3) plausible mouth movements (4) presence of natural eye blinks. The existing methods mostly address the audio-visual lip synchronization, and few recent works have addressed the synthesis of natural eye blinks for overall video realism. In this paper, we propose a method for identity-preserving realistic facial animation from speech. We first generate person-independent facial landmarks from audio using DeepSpeech features for invariance to different voices, accents, etc. To add realism, we impose eye blinks on facial landmarks using unsupervised learning and retargets the person-independent landmarks to person-specific landmarks to preserve the identity-related facial structure which helps in the generation of plausible mouth shapes of the target identity. Finally, we use LSGAN to generate the facial texture from person-specific facial landmarks, using an attention mechanism that helps to preserve identity-related texture. An extensive comparison of our proposed method with the current state-of-the-art methods demonstrates a significant improvement in terms of lip synchronization accuracy, image reconstruction quality, sharpness, and identity-preservation. A user study also reveals improved realism of our animation results over the state-of-the-art methods. To the best of our knowledge, this is the first work in speech-driven 2D facial animation that simultaneously addresses all the above-mentioned attributes of a realistic speech-driven face animation.
Facial attribute analysis in the real world scenario is very challenging mainly because of complex face variations. Existing works of analyzing face attributes are mostly based on the cropped and aligned face images. However, this result in the capability of attribute prediction heavily relies on the preprocessing of face detector. To address this problem, we present a novel jointly learned deep architecture for both facial attribute analysis and face detection. Our framework can process the natural images in the wild and our experiments on CelebA and LFWA datasets clearly show that the state-of-the-art performance is obtained.