Do you want to publish a course? Click here

Identity-Preserving Realistic Talking Face Generation

84   0   0.0 ( 0 )
 Added by Sanjana Sinha
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Speech-driven facial animation is useful for a variety of applications such as telepresence, chatbots, etc. The necessary attributes of having a realistic face animation are 1) audio-visual synchronization (2) identity preservation of the target individual (3) plausible mouth movements (4) presence of natural eye blinks. The existing methods mostly address the audio-visual lip synchronization, and few recent works have addressed the synthesis of natural eye blinks for overall video realism. In this paper, we propose a method for identity-preserving realistic facial animation from speech. We first generate person-independent facial landmarks from audio using DeepSpeech features for invariance to different voices, accents, etc. To add realism, we impose eye blinks on facial landmarks using unsupervised learning and retargets the person-independent landmarks to person-specific landmarks to preserve the identity-related facial structure which helps in the generation of plausible mouth shapes of the target identity. Finally, we use LSGAN to generate the facial texture from person-specific facial landmarks, using an attention mechanism that helps to preserve identity-related texture. An extensive comparison of our proposed method with the current state-of-the-art methods demonstrates a significant improvement in terms of lip synchronization accuracy, image reconstruction quality, sharpness, and identity-preservation. A user study also reveals improved realism of our animation results over the state-of-the-art methods. To the best of our knowledge, this is the first work in speech-driven 2D facial animation that simultaneously addresses all the above-mentioned attributes of a realistic speech-driven face animation.

rate research

Read More

106 - Yang Song , Jingwen Zhu , Dawei Li 2018
Given an arbitrary face image and an arbitrary speech clip, the proposed work attempts to generating the talking face video with accurate lip synchronization while maintaining smooth transition of both lip and facial movement over the entire video clip. Existing works either do not consider temporal dependency on face images across different video frames thus easily yielding noticeable/abrupt facial and lip movement or are only limited to the generation of talking face video for a specific person thus lacking generalization capacity. We propose a novel conditional video generation network where the audio input is treated as a condition for the recurrent adversarial network such that temporal dependency is incorporated to realize smooth transition for the lip and facial movement. In addition, we deploy a multi-task adversarial training scheme in the context of video generation to improve both photo-realism and the accuracy for lip synchronization. Finally, based on the phoneme distribution information extracted from the audio clip, we develop a sample selection method that effectively reduces the size of the training dataset without sacrificing the quality of the generated video. Extensive experiments on both controlled and uncontrolled datasets demonstrate the superiority of the proposed approach in terms of visual quality, lip sync accuracy, and smooth transition of lip and facial movement, as compared to the state-of-the-art.
Face super-resolution (SR) has become an indispensable function in security solutions such as video surveillance and identification system, but the distortion in facial components is a great challenge in it. Most state-of-the-art methods have utilized facial priors with deep neural networks. These methods require extra labels, longer training time, and larger computation memory. In this paper, we propose a novel Edge and Identity Preserving Network for Face SR Network, named as EIPNet, to minimize the distortion by utilizing a lightweight edge block and identity information. We present an edge block to extract perceptual edge information, and concatenate it to the original feature maps in multiple scales. This structure progressively provides edge information in reconstruction to aggregate local and global structural information. Moreover, we define an identity loss function to preserve identification of SR images. The identity loss function compares feature distributions between SR images and their ground truth to recover identities in SR images. In addition, we provide a luminance-chrominance error (LCE) to separately infer brightness and color information in SR images. The LCE method not only reduces the dependency of color information by dividing brightness and color components but also enables our network to reflect differences between SR images and their ground truth in two color spaces of RGB and YUV. The proposed method facilitates the proposed SR network to elaborately restore facial components and generate high quality 8x scaled SR images with a lightweight network structure. Furthermore, our network is able to reconstruct an 128x128 SR image with 215 fps on a GTX 1080Ti GPU. Extensive experiments demonstrate that our network qualitatively and quantitatively outperforms state-of-the-art methods on two challenging datasets: CelebA and VGGFace2.
84 - Zihao Jian , Minshan Xie 2021
3D face reconstruction and face alignment are two fundamental and highly related topics in computer vision. Recently, some works start to use deep learning models to estimate the 3DMM coefficients to reconstruct 3D face geometry. However, the performance is restricted due to the limitation of the pre-defined face templates. To address this problem, some end-to-end methods, which can completely bypass the calculation of 3DMM coefficients, are proposed and attract much attention. In this report, we introduce and analyse three state-of-the-art methods in 3D face reconstruction and face alignment. Some potential improvement on PRN are proposed to further enhance its accuracy and speed.
178 - Hang Zhou , Yasheng Sun , Wayne Wu 2021
While accurate lip synchronization has been achieved for arbitrary-subject audio-driven talking face generation, the problem of how to efficiently drive the head pose remains. Previous methods rely on pre-estimated structural information such as landmarks and 3D parameters, aiming to generate personalized rhythmic movements. However, the inaccuracy of such estimated information under extreme conditions would lead to degradation problems. In this paper, we propose a clean yet effective framework to generate pose-controllable talking faces. We operate on raw face images, using only a single photo as an identity reference. The key is to modularize audio-visual representations by devising an implicit low-dimension pose code. Substantially, both speech content and head pose information lie in a joint non-identity embedding space. While speech content information can be defined by learning the intrinsic synchronization between audio-visual modalities, we identify that a pose code will be complementarily learned in a modulated convolution-based reconstruction framework. Extensive experiments show that our method generates accurately lip-synced talking faces whose poses are controllable by other videos. Moreover, our model has multiple advanced capabilities including extreme view robustness and talking face frontalization. Code, models, and demo videos are available at https://hangz-nju-cuhk.github.io/projects/PC-AVS.
Facial verification systems are vulnerable to poisoning attacks that make use of multiple-identity images (MIIs)---face images stored in a database that resemble multiple persons, such that novel images of any of the constituent persons are verified as matching the identity of the MII. Research on this mode of attack has focused on defence by detection, with no explanation as to why the vulnerability exists. New quantitative results are presented that support an explanation in terms of the geometry of the representations spaces used by the verification systems. In the spherical geometry of those spaces, the angular distance distributions of matching and non-matching pairs of face representations are only modestly separated, approximately centred at 90 and 40-60 degrees, respectively. This is sufficient for open-set verification on normal data but provides an opportunity for MII attacks. Our analysis considers ideal MII algorithms, demonstrating that, if realisable, they would deliver faces roughly 45 degrees from their constituent faces, thus classed as matching them. We study the performance of three methods for MII generation---gallery search, image space morphing, and representation space inversion---and show that the latter two realise the ideal well enough to produce effective attacks, while the former could succeed but only with an implausibly large gallery to search. Gallery search and inversion MIIs depend on having access to a facial comparator, for optimisation, but our results show that these attacks can still be effective when attacking disparate comparators, thus securing a deployed comparator is an insufficient defence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا