No Arabic abstract
In spite of its extensive adaptation in almost every medical diagnostic and examinatorial application, Magnetic Resonance Imaging (MRI) is still a slow imaging modality which limits its use for dynamic imaging. In recent years, Parallel Imaging (PI) and Compressed Sensing (CS) have been utilised to accelerate the MRI acquisition. In clinical settings, subsampling the k-space measurements during scanning time using Cartesian trajectories, such as rectilinear sampling, is currently the most conventional CS approach applied which, however, is prone to producing aliased reconstructions. With the advent of the involvement of Deep Learning (DL) in accelerating the MRI, reconstructing faithful images from subsampled data became increasingly promising. Retrospectively applying a subsampling mask onto the k-space data is a way of simulating the accelerated acquisition of k-space data in real clinical setting. In this paper we compare and provide a review for the effect of applying either rectilinear or radial retrospective subsampling on the quality of the reconstructions outputted by trained deep neural networks. With the same choice of hyper-parameters, we train and evaluate two distinct Recurrent Inference Machines (RIMs), one for each type of subsampling. The qualitative and quantitative results of our experiments indicate that the model trained on data with radial subsampling attains higher performance and learns to estimate reconstructions with higher fidelity paving the way for other DL approaches to involve radial subsampling.
Fast data acquisition in Magnetic Resonance Imaging (MRI) is vastly in demand and scan time directly depends on the number of acquired k-space samples. The data-driven methods based on deep neural networks have resulted in promising improvements, compared to the conventional methods, in image reconstruction algorithms. The connection between deep neural network and Ordinary Differential Equation (ODE) has been observed and studied recently. The studies show that different residual networks can be interpreted as Euler discretization of an ODE. In this paper, we propose an ODE-based deep network for MRI reconstruction to enable the rapid acquisition of MR images with improved image quality. Our results with undersampled data demonstrate that our method can deliver higher quality images in comparison to the reconstruction methods based on the standard UNet network and Residual network.
Purpose: Although recent deep energy-based generative models (EBMs) have shown encouraging results in many image generation tasks, how to take advantage of the self-adversarial cogitation in deep EBMs to boost the performance of Magnetic Resonance Imaging (MRI) reconstruction is still desired. Methods: With the successful application of deep learning in a wide range of MRI reconstruction, a line of emerging research involves formulating an optimization-based reconstruction method in the space of a generative model. Leveraging this, a novel regularization strategy is introduced in this article which takes advantage of self-adversarial cogitation of the deep energy-based model. More precisely, we advocate for alternative learning a more powerful energy-based model with maximum likelihood estimation to obtain the deep energy-based information, represented as image prior. Simultaneously, implicit inference with Langevin dynamics is a unique property of re-construction. In contrast to other generative models for reconstruction, the proposed method utilizes deep energy-based information as the image prior in reconstruction to improve the quality of image. Results: Experiment results that imply the proposed technique can obtain remarkable performance in terms of high reconstruction accuracy that is competitive with state-of-the-art methods, and does not suffer from mode collapse. Conclusion: Algorithmically, an iterative approach was presented to strengthen EBM training with the gradient of energy network. The robustness and the reproducibility of the algorithm were also experimentally validated. More importantly, the proposed reconstruction framework can be generalized for most MRI reconstruction scenarios.
Retrospectively gated cine (retro-cine) MRI is the clinical standard for cardiac functional analysis. Deep learning (DL) based methods have been proposed for the reconstruction of highly undersampled MRI data and show superior image quality and magnitude faster reconstruction time than CS-based methods. Nevertheless, it remains unclear whether DL reconstruction is suitable for cardiac function analysis. To address this question, in this study we evaluate and compare the cardiac functional values (EDV, ESV and EF for LV and RV, respectively) obtained from highly accelerated MRI acquisition using DL based reconstruction algorithm (DL-cine) with values from CS-cine and conventional retro-cine. To the best of our knowledge, this is the first work to evaluate the cine MRI with deep learning reconstruction for cardiac function analysis and compare it with other conventional methods. The cardiac functional values obtained from cine MRI with deep learning reconstruction are consistent with values from clinical standard retro-cine MRI.
We propose a novel deep neural network architecture by mapping the robust proximal gradient scheme for fast image reconstruction in parallel MRI (pMRI) with regularization function trained from data. The proposed network learns to adaptively combine the multi-coil images from incomplete pMRI data into a single image with homogeneous contrast, which is then passed to a nonlinear encoder to efficiently extract sparse features of the image. Unlike most of existing deep image reconstruction networks, our network does not require knowledge of sensitivity maps, which can be difficult to estimate accurately, and have been a major bottleneck of image reconstruction in real-world pMRI applications. The experimental results demonstrate the promising performance of our method on a variety of pMRI imaging data sets.
Fast data acquisition in Magnetic Resonance Imaging (MRI) is vastly in demand and scan time directly depends on the number of acquired k-space samples. Conventional MRI reconstruction methods for fast MRI acquisition mostly relied on different regularizers which represent analytical models of sparsity. However, recent data-driven methods based on deep learning has resulted in promising improvements in image reconstruction algorithms. In this paper, we propose a deep plug-and-play prior framework for parallel MRI reconstruction problems which utilize a deep neural network (DNN) as an advanced denoiser within an iterative method. This, in turn, enables rapid acquisition of MR images with improved image quality. The proposed method was compared with the reconstructions using the clinical gold standard GRAPPA method. Our results with undersampled data demonstrate that our method can deliver considerably higher quality images at high acceleration factors in comparison to clinical gold standard method for MRI reconstructions. Our proposed reconstruction enables an increase in acceleration factor, and a reduction in acquisition time while maintaining high image quality.