No Arabic abstract
Instance segmentation in 3D scenes is fundamental in many applications of scene understanding. It is yet challenging due to the compound factors of data irregularity and uncertainty in the numbers of instances. State-of-the-art methods largely rely on a general pipeline that first learns point-wise features discriminative at semantic and instance levels, followed by a separate step of point grouping for proposing object instances. While promising, they have the shortcomings that (1) the second step is not supervised by the main objective of instance segmentation, and (2) their point-wise feature learning and grouping are less effective to deal with data irregularities, possibly resulting in fragmented segmentations. To address these issues, we propose in this work an end-to-end solution of Semantic Superpoint Tree Network (SSTNet) for proposing object instances from scene points. Key in SSTNet is an intermediate, semantic superpoint tree (SST), which is constructed based on the learned semantic features of superpoints, and which will be traversed and split at intermediate tree nodes for proposals of object instances. We also design in SSTNet a refinement module, termed CliqueNet, to prune superpoints that may be wrongly grouped into instance proposals. Experiments on the benchmarks of ScanNet and S3DIS show the efficacy of our proposed method. At the time of submission, SSTNet ranks top on the ScanNet (V2) leaderboard, with 2% higher of mAP than the second best method. The source code in PyTorch is available at https://github.com/Gorilla-Lab-SCUT/SSTNet.
3D point cloud semantic segmentation is a challenging topic in the computer vision field. Most of the existing methods in literature require a large amount of fully labeled training data, but it is extremely time-consuming to obtain these training data by manually labeling massive point clouds. Addressing this problem, we propose a superpoint-guided semi-supervised segmentation network for 3D point clouds, which jointly utilizes a small portion of labeled scene point clouds and a large number of unlabeled point clouds for network training. The proposed network is iteratively updated with its predicted pseudo labels, where a superpoint generation module is introduced for extracting superpoints from 3D point clouds, and a pseudo-label optimization module is explored for automatically assigning pseudo labels to the unlabeled points under the constraint of the extracted superpoints. Additionally, there are some 3D points without pseudo-label supervision. We propose an edge prediction module to constrain features of edge points. A superpoint feature aggregation module and a superpoint feature consistency loss function are introduced to smooth superpoint features. Extensive experimental results on two 3D public datasets demonstrate that our method can achieve better performance than several state-of-the-art point cloud segmentation networks and several popular semi-supervised segmentation methods with few labeled scenes.
We introduce 3D-SIS, a novel neural network architecture for 3D semantic instance segmentation in commodity RGB-D scans. The core idea of our method is to jointly learn from both geometric and color signal, thus enabling accurate instance predictions. Rather than operate solely on 2D frames, we observe that most computer vision applications have multi-view RGB-D input available, which we leverage to construct an approach for 3D instance segmentation that effectively fuses together these multi-modal inputs. Our network leverages high-resolution RGB input by associating 2D images with the volumetric grid based on the pose alignment of the 3D reconstruction. For each image, we first extract 2D features for each pixel with a series of 2D convolutions; we then backproject the resulting feature vector to the associated voxel in the 3D grid. This combination of 2D and 3D feature learning allows significantly higher accuracy object detection and instance segmentation than state-of-the-art alternatives. We show results on both synthetic and real-world public benchmarks, achieving an improvement in mAP of over 13 on real-world data.
Most existing point cloud instance and semantic segmentation methods rely heavily on strong supervision signals, which require point-level labels for every point in the scene. However, such strong supervision suffers from large annotation costs, arousing the need to study efficient annotating. In this paper, we discover that the locations of instances matter for 3D scene segmentation. By fully taking the advantages of locations, we design a weakly supervised point cloud segmentation algorithm that only requires clicking on one point per instance to indicate its location for annotation. With over-segmentation for pre-processing, we extend these location annotations into segments as seg-level labels. We further design a segment grouping network (SegGroup) to generate pseudo point-level labels under seg-level labels by hierarchically grouping the unlabeled segments into the relevant nearby labeled segments, so that existing point-level supervised segmentation models can directly consume these pseudo labels for training. Experimental results show that our seg-level supervised method (SegGroup) achieves comparable results with the fully annotated point-level supervised methods. Moreover, it also outperforms the recent weakly supervised methods given a fixed annotation budget.
Objective: A new image instance segmentation method is proposed to segment individual glands (instances) in colon histology images. This process is challenging since the glands not only need to be segmented from a complex background, they must also be individually identified. Methods: We leverage the idea of image-to-image prediction in recent deep learning by designing an algorithm that automatically exploits and fuses complex multichannel information - regional, location, and boundary cues - in gland histology images. Our proposed algorithm, a deep multichannel framework, alleviates heavy feature design due to the use of convolutional neural networks and is able to meet multifarious requirements by altering channels. Results: Compared with methods reported in the 2015 MICCAI Gland Segmentation Challenge and other currently prevalent instance segmentation methods, we observe state-of-the-art results based on the evaluation metrics. Conclusion: The proposed deep multichannel algorithm is an effective method for gland instance segmentation. Significance: The generalization ability of our model not only enable the algorithm to solve gland instance segmentation problems, but the channel is also alternative that can be replaced for a specific task.
3D point cloud semantic and instance segmentation is crucial and fundamental for 3D scene understanding. Due to the complex structure, point sets are distributed off balance and diversely, which appears as both category imbalance and pattern imbalance. As a result, deep networks can easily forget the non-dominant cases during the learning process, resulting in unsatisfactory performance. Although re-weighting can reduce the influence of the well-classified examples, they cannot handle the non-dominant patterns during the dynamic training. In this paper, we propose a memory-augmented network to learn and memorize the representative prototypes that cover diverse samples universally. Specifically, a memory module is introduced to alleviate the forgetting issue by recording the patterns seen in mini-batch training. The learned memory items consistently reflect the interpretable and meaningful information for both dominant and non-dominant categories and cases. The distorted observations and rare cases can thus be augmented by retrieving the stored prototypes, leading to better performances and generalization. Exhaustive experiments on the benchmarks, i.e. S3DIS and ScanNetV2, reflect the superiority of our method on both effectiveness and efficiency. Not only the overall accuracy but also nondominant classes have improved substantially.