Do you want to publish a course? Click here

An Archival Search for Very-High-Energy Counterparts to Sub-Threshold Neutron-Star Merger Candidates

75   0   0.0 ( 0 )
 Added by Colin Adams
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recent discovery of electromagnetic signals in coincidence with gravitational waves from neutron-star mergers has solidified the importance of multimessenger campaigns for studying the most energetic astrophysical events. Pioneering multimessenger observatories, such as the LIGO/Virgo gravitational wave detectors and the IceCube neutrino observatory, record many candidate signals that fall short of the detection significance threshold. These sub-threshold event candidates are promising targets for multimessenger studies, as the information provided by these candidates may, when combined with time-coincident gamma-ray observations, lead to significant detections. In this contribution, I describe our use of sub-threshold binary neutron star merger candidates identified in Advanced LIGOs first observing run (O1) to search for transient events in very-high-energy gamma rays using archival observations from the VERITAS imaging atmospheric Cherenkov telescope array. I describe the promise of this technique for future joint sub-threshold searches.



rate research

Read More

262 - C. B. Adams , W. Benbow , A. Brill 2021
The recent discovery of electromagnetic signals in coincidence with neutron-star mergers has solidified the importance of multimessenger campaigns in studying the most energetic astrophysical events. Pioneering multimessenger observatories, such as LIGO/Virgo and IceCube, record many candidate signals below the detection significance threshold. These sub-threshold event candidates are promising targets for multimessenger studies, as the information provided by them may, when combined with contemporaneous gamma-ray observations, lead to significant detections. Here we describe a new method that uses such candidates to search for transient events using archival very-high-energy gamma-ray data from imaging atmospheric Cherenkov telescopes (IACTs). We demonstrate the application of this method to sub-threshold binary neutron star (BNS) merger candidates identified in Advanced LIGOs first observing run. We identify eight hours of archival VERITAS observations coincident with seven BNS merger candidates and search them for TeV emission. No gamma-ray emission is detected; we calculate upper limits on the integral flux and compare them to a short gamma-ray burst model. We anticipate this search method to serve as a starting point for IACT searches with future LIGO/Virgo data releases as well as in other sub-threshold studies for multimessenger transients, such as IceCube neutrinos. Furthermore, it can be deployed immediately with other current-generation IACTs, and has the potential for real-time use that places minimal burden on experimental operations. Lastly, this method may serve as a pilot for studies with the Cherenkov Telescope Array, which has the potential to observe even larger fields of view in its divergent pointing mode.
We present results from a search for a radio transient associated with the LIGO/Virgo source S190814bv, a likely neutron star-black hole (NSBH) merger, with the Australian Square Kilometre Array Pathfinder. We imaged a $30,{rm deg}^2$ field at $Delta T$=2, 9 and 33 days post-merger at a frequency of 944,MHz, comparing them to reference images from the Rapid ASKAP Continuum Survey observed 110 days prior to the event. Each epoch of our observations covers $89%$ of the LIGO/Virgo localisation region. We conducted an untargeted search for radio transients in this field, resulting in 21 candidates. For one of these, object[AT2019osy]{AT2019osy}, we performed multi-wavelength follow-up and ultimately ruled out the association with S190814bv. All other candidates are likely unrelated variables, but we cannot conclusively rule them out. We discuss our results in the context of model predictions for radio emission from neutron star-black hole mergers and place constrains on the circum-merger density and inclination angle of the merger. This survey is simultaneously the first large-scale radio follow-up of an NSBH merger, and the most sensitive widefield radio transients search to-date.
336 - A. Archer 2019
We conduct a search for periodic emission in the very high-energy gamma-ray band (VHE; E > 100 GeV) from a total of 13 pulsars in an archival VERITAS data set with a total exposure of over 450 hours. The set of pulsars includes many of the brightest young gamma-ray pulsars visible in the Northern Hemisphere. The data analysis resulted in non-detections of pulsed VHE gamma rays from each pulsar. Upper limits on a potential VHE gamma-ray flux are derived at the 95% confidence level above three energy thresholds using two methods. These are the first such searches for pulsed VHE emission from each of the pulsars, and the obtained limits constrain a possible flux component manifesting at VHEs as is seen for the Crab pulsar.
In order to identify the sources of the observed diffuse high-energy neutrino flux, it is crucial to discover their electromagnetic counterparts. IceCube began releasing alerts for single high-energy ($E > 60$ TeV) neutrino detections with sky localisation regions of order 1 deg radius in 2016. We used Pan-STARRS1 to follow-up five of these alerts during 2016-2017 to search for any optical transients that may be related to the neutrinos. Typically 10-20 faint ($m < 22.5$ mag) extragalactic transients are found within the Pan-STARRS1 footprints and are generally consistent with being unrelated field supernovae (SNe) and AGN. We looked for unusual properties of the detected transients, such as temporal coincidence of explosion epoch with the IceCube timestamp. We found only one transient that had properties worthy of a specific follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of astrophysical origin of $sim$50 %), we found a SN PS16cgx, located at 10.0 from the nominal IceCube direction. Spectroscopic observations of PS16cgx showed that it was an H-poor SN at z = 0.2895. The spectra and light curve resemble some high-energy Type Ic SNe, raising the possibility of a jet driven SN with an explosion epoch temporally coincident with the neutrino detection. However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously difficult. Based on all available data we conclude that the transient is more likely to be a Type Ia with relatively weak SiII absorption and a fairly normal rest-frame r-band light curve. If, as predicted, there is no high-energy neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence, and unrelated to the IceCube-160427A. We find no other plausible optical transient for any of the five IceCube events observed down to a 5$sigma$ limiting magnitude of $m sim 22$ mag, between 1 day and 25 days after detection.
The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anticoincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV--EeV energy range using the ANTARES, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within $pm500$ s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14-day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا