Do you want to publish a course? Click here

Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1

98   0   0.0 ( 0 )
 Added by Erkki Kankare
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In order to identify the sources of the observed diffuse high-energy neutrino flux, it is crucial to discover their electromagnetic counterparts. IceCube began releasing alerts for single high-energy ($E > 60$ TeV) neutrino detections with sky localisation regions of order 1 deg radius in 2016. We used Pan-STARRS1 to follow-up five of these alerts during 2016-2017 to search for any optical transients that may be related to the neutrinos. Typically 10-20 faint ($m < 22.5$ mag) extragalactic transients are found within the Pan-STARRS1 footprints and are generally consistent with being unrelated field supernovae (SNe) and AGN. We looked for unusual properties of the detected transients, such as temporal coincidence of explosion epoch with the IceCube timestamp. We found only one transient that had properties worthy of a specific follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of astrophysical origin of $sim$50 %), we found a SN PS16cgx, located at 10.0 from the nominal IceCube direction. Spectroscopic observations of PS16cgx showed that it was an H-poor SN at z = 0.2895. The spectra and light curve resemble some high-energy Type Ic SNe, raising the possibility of a jet driven SN with an explosion epoch temporally coincident with the neutrino detection. However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously difficult. Based on all available data we conclude that the transient is more likely to be a Type Ia with relatively weak SiII absorption and a fairly normal rest-frame r-band light curve. If, as predicted, there is no high-energy neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence, and unrelated to the IceCube-160427A. We find no other plausible optical transient for any of the five IceCube events observed down to a 5$sigma$ limiting magnitude of $m sim 22$ mag, between 1 day and 25 days after detection.

rate research

Read More

Ultra-luminous infrared galaxies (ULIRGs) have infrared luminosities $L_{mathrm{IR}} geq 10^{12} L_{odot}$, making them the most luminous objects in the infrared sky. These dusty objects are generally powered by starbursts with star-formation rates that exceed $100~ M_{odot}~ mathrm{yr}^{-1}$, possibly combined with a contribution from an active galactic nucleus. Such environments make ULIRGs plausible sources of astrophysical high-energy neutrinos, which can be observed by the IceCube Neutrino Observatory at the South Pole. We present a stacking search for high-energy neutrinos from a representative sample of 75 ULIRGs with redshift $z leq 0.13$ using 7.5 years of IceCube data. The results are consistent with a background-only observation, yielding upper limits on the neutrino flux from these 75 ULIRGs. For an unbroken $E^{-2.5}$ power-law spectrum, we report an upper limit on the stacked flux $Phi_{ u_mu + bar{ u}_mu}^{90%} = 3.24 times 10^{-14}~ mathrm{TeV^{-1}~ cm^{-2}~ s^{-1}}~ (E/10~ mathrm{TeV})^{-2.5}$ at 90% confidence level. In addition, we constrain the contribution of the ULIRG source population to the observed diffuse astrophysical neutrino flux as well as model predictions.
With infrared luminosities $L_{mathrm{IR}} geq 10^{12} L_{odot}$, Ultra-Luminous Infrared Galaxies (ULIRGs) are the most luminous objects in the infrared sky. They are predominantly powered by starburst regions with star-formation rates $gtrsim 100~ M_{odot}~ mathrm{yr^{-1}}$. ULIRGs can also host an active galactic nucleus (AGN). Both the starburst and AGN environments contain plausible hadronic accelerators, making ULIRGs candidate neutrino sources. We present the results of an IceCube stacking analysis searching for high-energy neutrinos from a representative sample of 75 ULIRGs with redshift $z leq 0.13$. While no significant excess of ULIRG neutrinos is found in 7.5 years of IceCube data, upper limits are reported on the neutrino flux from these 75 ULIRGs as well as an extrapolation for the full ULIRG source population. In addition, constraints are provided on models predicting neutrino emission from ULIRGs.
To facilitate multimessenger studies with TeV and PeV astrophysical neutrinos, the IceCube Collaboration has developed a realtime alert system for the highest confidence and best localized neutrino events. In this work we investigate the likelihood of association between realtime high-energy neutrino alerts and explosive optical transients, with a focus on core-collapse supernovae (CC SNe) as candidate neutrino sources. We report results from triggered optical follow-up observations of two IceCube alerts, IC170922A and IC171106A, with Blanco/DECam ($gri$ to 24th magnitude in $sim6$ epochs). Based on a suite of simulated supernova light curves, we develop and validate selection criteria for CC SNe exploding in coincidence with neutrino alerts. The DECam observations are sensitive to CC SNe at redshifts $z lesssim 0.3$. At redshifts $z lesssim 0.1$, our selection criteria reduce background SNe contamination to a level below the predicted signal. For the IC170922A (IC171106A) follow-up observations, we expect that 12.1% (9.5%) of coincident CC SNe at $z lesssim 0.3$ are recovered, and that on average, 0.23 (0.07) unassociated SNe in the 90% containment regions also pass our selection criteria. We find two total candidate CC SNe that are temporally coincident with the neutrino alerts, but none in the 90% containment regions, which is statistically consistent with expected rates of background CC SNe for these observations. Given the signal efficiencies and background rates derived from this pilot study, we estimate that to determine whether CC SNe are the dominant contribution to the total TeV-PeV energy IceCube neutrino flux at the $3sigma$ confidence level, DECam observations similar to those of this work would be needed for $sim200$ neutrino alerts, though this number falls to $sim60$ neutrino alerts if redshift information is available for all candidates.
110 - Sean Grullon 2010
The IceCube Neutrino Observatory is a 1 $km^{3}$ detector currently under construction at the South Pole. Searching for high energy neutrinos from unresolved astrophysical sources is one of the main analysis strategies used in the search for astrophysical neutrinos with the IceCube Neutrino Observatory. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could contribute to form a detectable signal above the atmospheric neutrino background. A reliable method of estimating the energy of the neutrino-induced lepton is crucial for identifying astrophysical neutrinos. An analysis is underway using data from the half completed detector taken during its 2008-2009 science run.
120 - Donglian Xu 2017
High-energy (TeV-PeV) cosmic neutrinos are expected to be produced in extremely energetic astrophysical sources such as active galactic nuclei. The IceCube Neutrino Observatory at the South Pole has recently detected a diffuse astrophysical neutrino flux. While the flux is consistent with all flavors of neutrinos being present, identification of tau neutrinos within the flux is yet to occur. Although tau neutrino production is thought to be low at the source, an equal fraction of neutrinos are expected at Earth due to averaged neutrino oscillations over astronomical distances. Above a few hundred TeV, tau neutrinos become resolvable in IceCube with negligible background from cosmic-ray induced atmospheric neutrinos. Identification of tau neutrinos within the observed flux is crucial to precise measurement of its flavor content, which could serve to test fundamental neutrino properties over extremely long baselines, and possibly shed light on new physics beyond the Standard Model. We present the analysis method and results from a recent search for astrophysical tau neutrinos in three years of IceCube data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا