Do you want to publish a course? Click here

ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

285   0   0.0 ( 0 )
 Added by Zhou Yu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Vision-and-language pretraining (VLP) aims to learn generic multimodal representations from massive image-text pairs. While various successful attempts have been proposed, learning fine-grained semantic alignments between image-text pairs plays a key role in their approaches. Nevertheless, most existing VLP approaches have not fully utilized the intrinsic knowledge within the image-text pairs, which limits the effectiveness of the learned alignments and further restricts the performance of their models. To this end, we introduce a new VLP method called ROSITA, which integrates the cross- and intra-modal knowledge in a unified scene graph to enhance the semantic alignments. Specifically, we introduce a novel structural knowledge masking (SKM) strategy to use the scene graph structure as a priori to perform masked language (region) modeling, which enhances the semantic alignments by eliminating the interference information within and across modalities. Extensive ablation studies and comprehensive analysis verifies the effectiveness of ROSITA in semantic alignments. Pretrained with both in-domain and out-of-domain datasets, ROSITA significantly outperforms existing state-of-the-art VLP methods on three typical vision-and-language tasks over six benchmark datasets.



rate research

Read More

Transformer architectures have brought about fundamental changes to computational linguistic field, which had been dominated by recurrent neural networks for many years. Its success also implies drastic changes in cross-modal tasks with language and vision, and many researchers have already tackled the issue. In this paper, we review some of the most critical milestones in the field, as well as overall trends on how transformer architecture has been incorporated into visuolinguistic cross-modal tasks. Furthermore, we discuss its current limitations and speculate upon some of the prospects that we find imminent.
Vision-and-language pre-training has achieved impressive success in learning multimodal representations between vision and language. To generalize this success to non-English languages, we introduce UC2, the first machine translation-augmented framework for cross-lingual cross-modal representation learning. To tackle the scarcity problem of multilingual captions for image datasets, we first augment existing English-only datasets with other languages via machine translation (MT). Then we extend the standard Masked Language Modeling and Image-Text Matching training objectives to multilingual setting, where alignment between different languages is captured through shared visual context (i.e, using image as pivot). To facilitate the learning of a joint embedding space of images and all languages of interest, we further propose two novel pre-training tasks, namely Masked Region-to-Token Modeling (MRTM) and Visual Translation Language Modeling (VTLM), leveraging MT-enhanced translated data. Evaluation on multilingual image-text retrieval and multilingual visual question answering benchmarks demonstrates that our proposed framework achieves new state-of-the-art on diverse non-English benchmarks while maintaining comparable performance to monolingual pre-trained models on English tasks.
Zero-shot image classification has made promising progress by training the aligned image and text encoders. The goal of this work is to advance zero-shot object detection, which aims to detect novel objects without bounding box nor mask annotations. We propose ViLD, a training method via Vision and Language knowledge Distillation. We distill the knowledge from a pre-trained zero-shot image classification model (e.g., CLIP) into a two-stage detector (e.g., Mask R-CNN). Our method aligns the region embeddings in the detector to the text and image embeddings inferred by the pre-trained model. We use the text embeddings as the detection classifier, obtained by feeding category names into the pre-trained text encoder. We then minimize the distance between the region embeddings and image embeddings, obtained by feeding region proposals into the pre-trained image encoder. During inference, we include text embeddings of novel categories into the detection classifier for zero-shot detection. We benchmark the performance on LVIS dataset by holding out all rare categories as novel categories. ViLD obtains 16.1 mask AP$_r$ with a Mask R-CNN (ResNet-50 FPN) for zero-shot detection, outperforming the supervised counterpart by 3.8. The model can directly transfer to other datasets, achieving 72.2 AP$_{50}$, 36.6 AP and 11.8 AP on PASCAL VOC, COCO and Objects365, respectively.
Existing research for image captioning usually represents an image using a scene graph with low-level facts (objects and relations) and fails to capture the high-level semantics. In this paper, we propose a Theme Concepts extended Image Captioning (TCIC) framework that incorporates theme concepts to represent high-level cross-modality semantics. In practice, we model theme concepts as memory vectors and propose Transformer with Theme Nodes (TTN) to incorporate those vectors for image captioning. Considering that theme concepts can be learned from both images and captions, we propose two settings for their representations learning based on TTN. On the vision side, TTN is configured to take both scene graph based features and theme concepts as input for visual representation learning. On the language side, TTN is configured to take both captions and theme concepts as input for text representation re-construction. Both settings aim to generate target captions with the same transformer-based decoder. During the training, we further align representations of theme concepts learned from images and corresponding captions to enforce the cross-modality learning. Experimental results on MS COCO show the effectiveness of our approach compared to some state-of-the-art models.
Referring image segmentation aims at segmenting the foreground masks of the entities that can well match the description given in the natural language expression. Previous approaches tackle this problem using implicit feature interaction and fusion between visual and linguistic modalities, but usually fail to explore informative words of the expression to well align features from the two modalities for accurately identifying the referred entity. In this paper, we propose a Cross-Modal Progressive Comprehension (CMPC) module and a Text-Guided Feature Exchange (TGFE) module to effectively address the challenging task. Concretely, the CMPC module first employs entity and attribute words to perceive all the related entities that might be considered by the expression. Then, the relational words are adopted to highlight the correct entity as well as suppress other irrelevant ones by multimodal graph reasoning. In addition to the CMPC module, we further leverage a simple yet effective TGFE module to integrate the reasoned multimodal features from different levels with the guidance of textual information. In this way, features from multi-levels could communicate with each other and be refined based on the textual context. We conduct extensive experiments on four popular referring segmentation benchmarks and achieve new state-of-the-art performances.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا