Do you want to publish a course? Click here

TCIC: Theme Concepts Learning Cross Language and Vision for Image Captioning

110   0   0.0 ( 0 )
 Added by Zhihao Fan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Existing research for image captioning usually represents an image using a scene graph with low-level facts (objects and relations) and fails to capture the high-level semantics. In this paper, we propose a Theme Concepts extended Image Captioning (TCIC) framework that incorporates theme concepts to represent high-level cross-modality semantics. In practice, we model theme concepts as memory vectors and propose Transformer with Theme Nodes (TTN) to incorporate those vectors for image captioning. Considering that theme concepts can be learned from both images and captions, we propose two settings for their representations learning based on TTN. On the vision side, TTN is configured to take both scene graph based features and theme concepts as input for visual representation learning. On the language side, TTN is configured to take both captions and theme concepts as input for text representation re-construction. Both settings aim to generate target captions with the same transformer-based decoder. During the training, we further align representations of theme concepts learned from images and corresponding captions to enforce the cross-modality learning. Experimental results on MS COCO show the effectiveness of our approach compared to some state-of-the-art models.

rate research

Read More

Transformer architectures have brought about fundamental changes to computational linguistic field, which had been dominated by recurrent neural networks for many years. Its success also implies drastic changes in cross-modal tasks with language and vision, and many researchers have already tackled the issue. In this paper, we review some of the most critical milestones in the field, as well as overall trends on how transformer architecture has been incorporated into visuolinguistic cross-modal tasks. Furthermore, we discuss its current limitations and speculate upon some of the prospects that we find imminent.
Video captioning targets interpreting the complex visual contents as text descriptions, which requires the model to fully understand video scenes including objects and their interactions. Prevailing methods adopt off-the-shelf object detection networks to give object proposals and use the attention mechanism to model the relations between objects. They often miss some undefined semantic concepts of the pretrained model and fail to identify exact predicate relationships between objects. In this paper, we investigate an open research task of generating text descriptions for the given videos, and propose Cross-Modal Graph (CMG) with meta concepts for video captioning. Specifically, to cover the useful semantic concepts in video captions, we weakly learn the corresponding visual regions for text descriptions, where the associated visual regions and textual words are named cross-modal meta concepts. We further build meta concept graphs dynamically with the learned cross-modal meta concepts. We also construct holistic video-level and local frame-level video graphs with the predicted predicates to model video sequence structures. We validate the efficacy of our proposed techniques with extensive experiments and achieve state-of-the-art results on two public datasets.
Shouldnt language and vision features be treated equally in vision-language (VL) tasks? Many VL approaches treat the language component as an afterthought, using simple language models that are either built upon fixed word embeddings trained on text-only data or are learned from scratch. We believe that language features deserve more attention, and conduct experiments which compare different word embeddings, language models, and embedding augmentation steps on five common VL tasks: image-sentence retrieval, image captioning, visual question answering, phrase grounding, and text-to-clip retrieval. Our experiments provide some striking results; an average embedding language model outperforms an LSTM on retrieval-style tasks; state-of-the-art representations such as BERT perform relatively poorly on vision-language tasks. From this comprehensive set of experiments we propose a set of best practices for incorporating the language component of VL tasks. To further elevate language features, we also show that knowledge in vision-language problems can be transferred across tasks to gain performance with multi-task training. This multi-task training is applied to a new Graph Oriented Vision-Language Embedding (GrOVLE), which we adapt from Word2Vec using WordNet and an original visual-language graph built from Visual Genome, providing a ready-to-use vision-language embedding: http://ai.bu.edu/grovle.
284 - Yuhao Cui , Zhou Yu , Chunqi Wang 2021
Vision-and-language pretraining (VLP) aims to learn generic multimodal representations from massive image-text pairs. While various successful attempts have been proposed, learning fine-grained semantic alignments between image-text pairs plays a key role in their approaches. Nevertheless, most existing VLP approaches have not fully utilized the intrinsic knowledge within the image-text pairs, which limits the effectiveness of the learned alignments and further restricts the performance of their models. To this end, we introduce a new VLP method called ROSITA, which integrates the cross- and intra-modal knowledge in a unified scene graph to enhance the semantic alignments. Specifically, we introduce a novel structural knowledge masking (SKM) strategy to use the scene graph structure as a priori to perform masked language (region) modeling, which enhances the semantic alignments by eliminating the interference information within and across modalities. Extensive ablation studies and comprehensive analysis verifies the effectiveness of ROSITA in semantic alignments. Pretrained with both in-domain and out-of-domain datasets, ROSITA significantly outperforms existing state-of-the-art VLP methods on three typical vision-and-language tasks over six benchmark datasets.
This paper studies zero-shot cross-lingual transfer of vision-language models. Specifically, we focus on multilingual text-to-video search and propose a Transformer-based model that learns contextualized multilingual multimodal embeddings. Under a zero-shot setting, we empirically demonstrate that performance degrades significantly when we query the multilingual text-video model with non-English sentences. To address this problem, we introduce a multilingual multimodal pre-training strategy, and collect a new multilingual instructional video dataset (MultiHowTo100M) for pre-training. Experiments on VTT show that our method significantly improves video search in non-English languages without additional annotations. Furthermore, when multilingual annotations are available, our method outperforms recent baselines by a large margin in multilingual text-to-video search on VTT and VATEX; as well as in multilingual text-to-image search on Multi30K. Our model and Multi-HowTo100M is available at http://github.com/berniebear/Multi-HT100M.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا