No Arabic abstract
Referring image segmentation aims at segmenting the foreground masks of the entities that can well match the description given in the natural language expression. Previous approaches tackle this problem using implicit feature interaction and fusion between visual and linguistic modalities, but usually fail to explore informative words of the expression to well align features from the two modalities for accurately identifying the referred entity. In this paper, we propose a Cross-Modal Progressive Comprehension (CMPC) module and a Text-Guided Feature Exchange (TGFE) module to effectively address the challenging task. Concretely, the CMPC module first employs entity and attribute words to perceive all the related entities that might be considered by the expression. Then, the relational words are adopted to highlight the correct entity as well as suppress other irrelevant ones by multimodal graph reasoning. In addition to the CMPC module, we further leverage a simple yet effective TGFE module to integrate the reasoned multimodal features from different levels with the guidance of textual information. In this way, features from multi-levels could communicate with each other and be refined based on the textual context. We conduct extensive experiments on four popular referring segmentation benchmarks and achieve new state-of-the-art performances.
Given a natural language expression and an image/video, the goal of referring segmentation is to produce the pixel-level masks of the entities described by the subject of the expression. Previous approaches tackle this problem by implicit feature interaction and fusion between visual and linguistic modalities in a one-stage manner. However, human tends to solve the referring problem in a progressive manner based on informative words in the expression, i.e., first roughly locating candidate entities and then distinguishing the target one. In this paper, we propose a Cross-Modal Progressive Comprehension (CMPC) scheme to effectively mimic human behaviors and implement it as a CMPC-I (Image) module and a CMPC-V (Video) module to improve referring image and video segmentation models. For image data, our CMPC-I module first employs entity and attribute words to perceive all the related entities that might be considered by the expression. Then, the relational words are adopted to highlight the target entity as well as suppress other irrelevant ones by spatial graph reasoning. For video data, our CMPC-V module further exploits action words based on CMPC-I to highlight the correct entity matched with the action cues by temporal graph reasoning. In addition to the CMPC, we also introduce a simple yet effective Text-Guided Feature Exchange (TGFE) module to integrate the reasoned multimodal features corresponding to different levels in the visual backbone under the guidance of textual information. In this way, multi-level features can communicate with each other and be mutually refined based on the textual context. Combining CMPC-I or CMPC-V with TGFE can form our image or video version referring segmentation frameworks and our frameworks achieve new state-of-the-art performances on four referring image segmentation benchmarks and three referring video segmentation benchmarks respectively.
Referring image segmentation aims to predict the foreground mask of the object referred by a natural language sentence. Multimodal context of the sentence is crucial to distinguish the referent from the background. Existing methods either insufficiently or redundantly model the multimodal context. To tackle this problem, we propose a gather-propagate-distribute scheme to model multimodal context by cross-modal interaction and implement this scheme as a novel Linguistic Structure guided Context Modeling (LSCM) module. Our LSCM module builds a Dependency Parsing Tree suppressed Word Graph (DPT-WG) which guides all the words to include valid multimodal context of the sentence while excluding disturbing ones through three steps over the multimodal feature, i.e., gathering, constrained propagation and distributing. Extensive experiments on four benchmarks demonstrate that our method outperforms all the previous state-of-the-arts.
Referring video object segmentation (RVOS) aims to segment video objects with the guidance of natural language reference. Previous methods typically tackle RVOS through directly grounding linguistic reference over the image lattice. Such bottom-up strategy fails to explore object-level cues, easily leading to inferior results. In this work, we instead put forward a two-stage, top-down RVOS solution. First, an exhaustive set of object tracklets is constructed by propagating object masks detected from several sampled frames to the entire video. Second, a Transformer-based tracklet-language grounding module is proposed, which models instance-level visual relations and cross-modal interactions simultaneously and efficiently. Our model ranks first place on CVPR2021 Referring Youtube-VOS challenge.
Referring expression comprehension (REC) and segmentation (RES) are two highly-related tasks, which both aim at identifying the referent according to a natural language expression. In this paper, we propose a novel Multi-task Collaborative Network (MCN) to achieve a joint learning of REC and RES for the first time. In MCN, RES can help REC to achieve better language-vision alignment, while REC can help RES to better locate the referent. In addition, we address a key challenge in this multi-task setup, i.e., the prediction conflict, with two innovative designs namely, Consistency Energy Maximization (CEM) and Adaptive Soft Non-Located Suppression (ASNLS). Specifically, CEM enables REC and RES to focus on similar visual regions by maximizing the consistency energy between two tasks. ASNLS supresses the response of unrelated regions in RES based on the prediction of REC. To validate our model, we conduct extensive experiments on three benchmark datasets of REC and RES, i.e., RefCOCO, RefCOCO+ and RefCOCOg. The experimental results report the significant performance gains of MCN over all existing methods, i.e., up to +7.13% for REC and +11.50% for RES over SOTA, which well confirm the validity of our model for joint REC and RES learning.
Referring expression comprehension aims to localize the object instance described by a natural language expression. Current referring expression methods have achieved good performance. However, none of them is able to achieve real-time inference without accuracy drop. The reason for the relatively slow inference speed is that these methods artificially split the referring expression comprehension into two sequential stages including proposal generation and proposal ranking. It does not exactly conform to the habit of human cognition. To this end, we propose a novel Realtime Cross-modality Correlation Filtering method (RCCF). RCCF reformulates the referring expression comprehension as a correlation filtering process. The expression is first mapped from the language domain to the visual domain and then treated as a template (kernel) to perform correlation filtering on the image feature map. The peak value in the correlation heatmap indicates the center points of the target box. In addition, RCCF also regresses a 2-D object size and 2-D offset. The center point coordinates, object size and center point offset together to form the target bounding box. Our method runs at 40 FPS while achieving leading performance in RefClef, RefCOCO, RefCOCO+ and RefCOCOg benchmarks. In the challenging RefClef dataset, our methods almost double the state-of-the-art performance (34.70% increased to 63.79%). We hope this work can arouse more attention and studies to the new cross-modality correlation filtering framework as well as the one-stage framework for referring expression comprehension.