Do you want to publish a course? Click here

Tensor Networks for Simulating Quantum Circuits on FPGAs

147   0   0.0 ( 0 )
 Added by Maksim Levental
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Most research in quantum computing today is performed against simulations of quantum computers rather than true quantum computers. Simulating a quantum computer entails implementing all of the unitary operators corresponding to the quantum gates as tensors. For high numbers of qubits, performing tensor multiplications for these simulations becomes quite expensive, since $N$-qubit gates correspond to $2^{N}$-dimensional tensors. One way to accelerate such a simulation is to use field programmable gate array (FPGA) hardware to efficiently compute the matrix multiplications. Though FPGAs can efficiently perform tensor multiplications, they are memory bound, having relatively small block random access memory. One way to potentially reduce the memory footprint of a quantum computing system is to represent it as a tensor network; tensor networks are a formalism for representing compositions of tensors wherein economical tensor contractions are readily identified. Thus we explore tensor networks as a means to reducing the memory footprint of quantum computing systems and broadly accelerating simulations of such systems.



rate research

Read More

The numerical simulation of quantum circuits is an indispensable tool for development, verification and validation of hybrid quantum-classical algorithms on near-term quantum co-processors. The emergence of exascale high-performance computing (HPC) platforms presents new opportunities for pushing the boundaries of quantum circuit simulation. We present a modernized version of the Tensor Network Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the eXtreme-scale ACCelerator (XACC) framework. The new version is based on the general purpose, scalable tensor network processing library, ExaTN, and provides multiple configurable quantum circuit simulators enabling either exact quantum circuit simulation via the full tensor network contraction, or approximate quantum state representations via suitable tensor factorizations. Upon necessity, stochastic noise modeling from real quantum processors is incorporated into the simulations by modeling quantum channels with Kraus tensors. By combining the portable XACC quantum programming frontend and the scalable ExaTN numerical backend we introduce an end-to-end virtual quantum development environment which can scale from laptops to future exascale platforms. We report initial benchmarks of our framework which include a demonstration of the distributed execution, incorporation of quantum decoherence models, and simulation of the random quantum circuits used for the certification of quantum supremacy on the Google Sycamore superconducting architecture.
165 - Daochen Wang 2019
In a recent breakthrough, Bravyi, Gosset and K{o}nig (BGK) [Science, 2018] proved that simulating constant depth quantum circuits takes classical circuits $Omega(log n)$ depth. In our paper, we first formalise their notion of simulation, which we call possibilistic simulation. Then, from well-known results, we deduce that their circuits can be simulated in depth $O(log^{2} n)$. Separately, we construct explicit classical circuits that can simulate any depth-$d$ quantum circuit with Clifford and $t$ $T$-gates in depth $O(d+t)$. Our classical circuits use ${text{NOT, AND, OR}}$ gates of fan-in $leq 2$.
We present some basic integer arithmetic quantum circuits, such as adders and multipliers-accumulators of various forms, as well as diagonal operators, which operate on multilevel qudits. The integers to be processed are represented in an alternative basis after they have been Fourier transformed. Several arithmetic circuits operating on Fourier transformed integers have appeared in the literature for two level qubits. Here we extend these techniques on multilevel qudits, as they may offer some advantages relative to qubits implementations. The arithmetic circuits presented can be used as basic building blocks for higher level algorithms such as quantum phase estimation, quantum simulation, quantum optimization etc., but they can also be used in the implementation of a quantum fractional Fourier transform as it is shown in a companion work presented separately.
Limited quantum memory is one of the most important constraints for near-term quantum devices. Understanding whether a small quantum computer can simulate a larger quantum system, or execute an algorithm requiring more qubits than available, is both of theoretical and practical importance. In this Letter, we introduce cluster parameters $K$ and $d$ of a quantum circuit. The tensor network of such a circuit can be decomposed into clusters of size at most $d$ with at most $K$ qubits of inter-cluster quantum communication. We propose a cluster simulation scheme that can simulate any $(K,d)$-clustered quantum circuit on a $d$-qubit machine in time roughly $2^{O(K)}$, with further speedups possible when taking more fine-grained circuit structure into account. We show how our scheme can be used to simulate clustered quantum systems -- such as large molecules -- that can be partitioned into multiple significantly smaller clusters with weak interactions among them. By using a suitable clustered ansatz, we also experimentally demonstrate that a quantum variational eigensolver can still achieve the desired performance for estimating the energy of the BeH$_2$ molecule while running on a physical quantum device with half the number of required qubits.
We generalize quantum circuits for the Toffoli gate presented by Selinger and Jones for functionally controlled NOT gates, i.e., $X$ gates controlled by arbitrary $n$-variable Boolean functions. Our constructions target the gate set consisting of Clifford gates and single qubit rotations by arbitrary angles. Our constructions use the Walsh-Hadamard spectrum of Boolean functions and build on the work by Schuch and Siewert and Welch et al. We present quantum circuits for the case where the target qubit is in an arbitrary state as well as the special case where the target is in a known state. Additionally, we present constructions that require no auxiliary qubits and constructions that have a rotation depth of 1.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا