Do you want to publish a course? Click here

Gravitational perturbations of rotating black holes in Lorenz gauge

64   0   0.0 ( 0 )
 Added by Sam Dolan Dr
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Perturbations of Kerr spacetime are typically studied with the Teukolsky formalism, in which a pair of invariant components of the perturbed Weyl tensor are expressed in terms of separable modes that satisfy ordinary differential equations. However, for certain applications it is desirable to construct the full metric perturbation in the Lorenz gauge, in which the linearized Einstein field equations take a manifestly hyperbolic form. Here we obtain a set of Lorenz-gauge solutions to the vacuum field equations in terms of homogeneous solutions to the spin-2, spin-1 and spin-0 Teukolsky equations; and completion pieces that represent perturbations to the mass and angular momentum of the spacetime. The solutions are valid in vacuum Petrov type-D spacetimes that admit a conformal Killing-Yano tensor.



rate research

Read More

We identify a set of Hertz potentials for solutions to the vector wave equation on black hole spacetimes. The Hertz potentials yield Lorenz gauge electromagnetic vector potentials that represent physical solutions to the Maxwell equations, satisfy the Teukolsky equation, and are related to the Maxwell scalars by straightforward and separable inversion relations. Our construction, based on the GHP formalism, avoids the need for a mode ansatz and leads to potentials that represent both static and non-static solutions. As an explicit example, we specialise the procedure to mode-decomposed perturbations of Kerr spacetime and in the process make connections with previous results.
In the teleparallel equivalent of general relativity the energy density of asymptotically flat gravitational fields can be naturaly defined as a scalar density restricted to a three-dimensional spacelike hypersurface $Sigma$. Integration over the whole $Sigma$ yields the standard ADM energy. After establishing the reference space with zero gravitational energy we obtain the expression of the localized energy for a Kerr black hole. The expression of the energy inside a surface of constant radius can be explicitly calculated in the limit of small $a$, the specific angular momentum. Such expression turns out to be exactly the same as the one obtained by means of the method preposed recently by Brown and York. We also calculate the energy contained within the outer horizon of the black hole for {it any} value of $a$. The result is practically indistinguishable from $E=2M_{ir}$, where $M_{ir}$ is the irreducible mass of the black hole.
148 - Yoni BenTov , Joe Swearngin 2017
We present an exact solution of Einsteins equation that describes the gravitational shockwave of a massless particle on the horizon of a Kerr-Newman black hole. The backreacted metric is of the generalized Kerr-Schild form and is Type II in the Petrov classification. We show that if the background frame is aligned with shear-free null geodesics, and if the background Ricci tensor satisfies a simple condition, then all nonlinearities in the perturbation will drop out of the curvature scalars. We make heavy use of the method of spin coefficients (the Newman-Penrose formalism) in its compacted form (the Geroch-Held-Penrose formalism).
With the assumptions of a quartic scalar field, finite energy of the scalar field in a volume, and vanishing radial component of 4-current at infinity, an exact static and spherically symmetric hairy black hole solution exists in the framework of Horndeski theory with parameter $Q$, which encompasses the Schwarzschild black hole ($Q=0$). We obtain the axially symmetric counterpart of this hairy solution, namely the rotating Horndeski black hole, which contains as a special case the Kerr black hole ($Q=0$). Interestingly, for a set of parameters ($M, a$, and $Q$), there exists an extremal value of the parameter $Q=Q_{e}$, which corresponds to an extremal black hole with degenerate horizons, while for $Q<Q_{e}$, it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for $Q>Q_{e}$. We investigate the effect of the $Q$ on the rotating black hole spacetime geometry and analytically deduce corrections to the light deflection angle from the Kerr and nonrotating Horndeski gravity black hole values. For the S2 source star, we calculate the deflection angle for the Sgr A* model of rotating Horndeski gravity black hole for both prograde and retrograde photons and show that it is larger than the Kerr black hole value.
Loop Quantum Gravity (LQG) is a theory that proposes a way to model the behavior of the spacetime in situations where its atomic characteristic arises. Among these situations, the spacetime behavior near the Big Bang or black holes singularity. The detection of gravitational waves, on the other hand, has opened the way to new perspectives in the investigation of the spacetime structure. In this work, by the use of a WKB method introduced by Schutz and Will cite{Schutz:1985zz}, and after improved by Iyer and Will cite{s.iyer-prd35}, we study the gravitational wave spectrum emitted by loop quantum black holes, which correspond to a quantized version of the Schwarzschild spacetime by LQG techniques. From the results obtained, loop quantum black holes have been shown stable under axial gravitational perturbations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا