Do you want to publish a course? Click here

Separable electromagnetic perturbations of rotating black holes

77   0   0.0 ( 0 )
 Added by Barry Wardell
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We identify a set of Hertz potentials for solutions to the vector wave equation on black hole spacetimes. The Hertz potentials yield Lorenz gauge electromagnetic vector potentials that represent physical solutions to the Maxwell equations, satisfy the Teukolsky equation, and are related to the Maxwell scalars by straightforward and separable inversion relations. Our construction, based on the GHP formalism, avoids the need for a mode ansatz and leads to potentials that represent both static and non-static solutions. As an explicit example, we specialise the procedure to mode-decomposed perturbations of Kerr spacetime and in the process make connections with previous results.



rate research

Read More

We show that, independently of the scalar field potential and of specific asymptotic properties of the spacetime (asymptotically flat, de Sitter or anti-de Sitter), any static, spherically symmetric or planar, black hole or soliton solution of the Einstein theory minimally coupled to a real scalar field with a general potential is mode stable under linear odd-parity perturbations. To this end, we generalize the Regge-Wheeler equation for a generic self-interacting scalar field, and show that the potential of the relevant Schrodinger operator can be mapped, by the so-called S-deformation, to a semi-positively defined potential. With these results at hand we study the existence of slowly rotating configurations. The frame dragging effect is compared with the Kerr black hole.
Perturbations of Kerr spacetime are typically studied with the Teukolsky formalism, in which a pair of invariant components of the perturbed Weyl tensor are expressed in terms of separable modes that satisfy ordinary differential equations. However, for certain applications it is desirable to construct the full metric perturbation in the Lorenz gauge, in which the linearized Einstein field equations take a manifestly hyperbolic form. Here we obtain a set of Lorenz-gauge solutions to the vacuum field equations in terms of homogeneous solutions to the spin-2, spin-1 and spin-0 Teukolsky equations; and completion pieces that represent perturbations to the mass and angular momentum of the spacetime. The solutions are valid in vacuum Petrov type-D spacetimes that admit a conformal Killing-Yano tensor.
We obtain rotating black hole solutions to the novel 3D Gauss-Bonnet theory of gravity recently proposed. These solutions generalize the BTZ metric and are not of constant curvature. They possess an ergoregion and outer horizon, but do not have an inner horizon. We present their basic properties and show that they break the universality of thermodynamics present for their static charged counterparts, whose properties we also discuss. Extending our considerations to higher dimensions, we also obtain novel 4D Gauss-Bonnet rotating black strings.
148 - Yoni BenTov , Joe Swearngin 2017
We present an exact solution of Einsteins equation that describes the gravitational shockwave of a massless particle on the horizon of a Kerr-Newman black hole. The backreacted metric is of the generalized Kerr-Schild form and is Type II in the Petrov classification. We show that if the background frame is aligned with shear-free null geodesics, and if the background Ricci tensor satisfies a simple condition, then all nonlinearities in the perturbation will drop out of the curvature scalars. We make heavy use of the method of spin coefficients (the Newman-Penrose formalism) in its compacted form (the Geroch-Held-Penrose formalism).
We construct slowly rotating black-hole solutions of Einsteinian cubic gravity (ECG) in four dimensions with flat and AdS asymptotes. At leading order in the rotation parameter, the only modification with respect to the static case is the appearance of a non-vanishing $g_{tphi}$ component. Similarly to the static case, the order of the equation determining such component can be reduced twice, giving rise to a second-order differential equation which can be easily solved numerically as a function of the ECG coupling. We study how various physical properties of the solutions are modified with respect to the Einstein gravity case, including its angular velocity, photon sphere, photon rings, shadow, and innermost stable circular orbits (in the case of timelike geodesics).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا