Do you want to publish a course? Click here

Efficient Local Planning with Linear Function Approximation

169   0   0.0 ( 0 )
 Added by Dong Yin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study query and computationally efficient planning algorithms with linear function approximation and a simulator. We assume that the agent only has local access to the simulator, meaning that the agent can only query the simulator at states that have been visited before. This setting is more practical than many prior works on reinforcement learning with a generative model. We propose an algorithm named confident Monte Carlo least square policy iteration (Confident MC-LSPI) for this setting. Under the assumption that the Q-functions of all deterministic policies are linear in known features of the state-action pairs, we show that our algorithm has polynomial query and computational complexities in the dimension of the features, the effective planning horizon and the targeted sub-optimality, while these complexities are independent of the size of the state space. One technical contribution of our work is the introduction of a novel proof technique that makes use of a virtual policy iteration algorithm. We use this method to leverage existing results on $ell_infty$-bounded approximate policy iteration to show that our algorithm can learn the optimal policy for the given initial state even only with local access to the simulator. We believe that this technique can be extended to broader settings beyond this work.



rate research

Read More

We study reinforcement learning (RL) with linear function approximation under the adaptivity constraint. We consider two popular limited adaptivity models: batch learning model and rare policy switch model, and propose two efficient online RL algorithms for linear Markov decision processes. In specific, for the batch learning model, our proposed LSVI-UCB-Batch algorithm achieves an $tilde O(sqrt{d^3H^3T} + dHT/B)$ regret, where $d$ is the dimension of the feature mapping, $H$ is the episode length, $T$ is the number of interactions and $B$ is the number of batches. Our result suggests that it suffices to use only $sqrt{T/dH}$ batches to obtain $tilde O(sqrt{d^3H^3T})$ regret. For the rare policy switch model, our proposed LSVI-UCB-RareSwitch algorithm enjoys an $tilde O(sqrt{d^3H^3T[1+T/(dH)]^{dH/B}})$ regret, which implies that $dHlog T$ policy switches suffice to obtain the $tilde O(sqrt{d^3H^3T})$ regret. Our algorithms achieve the same regret as the LSVI-UCB algorithm (Jin et al., 2019), yet with a substantially smaller amount of adaptivity.
Reinforcement learning (RL) with linear function approximation has received increasing attention recently. However, existing work has focused on obtaining $sqrt{T}$-type regret bound, where $T$ is the number of interactions with the MDP. In this paper, we show that logarithmic regret is attainable under two recently proposed linear MDP assumptions provided that there exists a positive sub-optimality gap for the optimal action-value function. More specifically, under the linear MDP assumption (Jin et al. 2019), the LSVI-UCB algorithm can achieve $tilde{O}(d^{3}H^5/text{gap}_{text{min}}cdot log(T))$ regret; and under the linear mixture MDP assumption (Ayoub et al. 2020), the UCRL-VTR algorithm can achieve $tilde{O}(d^{2}H^5/text{gap}_{text{min}}cdot log^3(T))$ regret, where $d$ is the dimension of feature mapping, $H$ is the length of episode, $text{gap}_{text{min}}$ is the minimal sub-optimality gap, and $tilde O$ hides all logarithmic terms except $log(T)$. To the best of our knowledge, these are the first logarithmic regret bounds for RL with linear function approximation. We also establish gap-dependent lower bounds for the two linear MDP models.
We study the off-policy evaluation (OPE) problem in reinforcement learning with linear function approximation, which aims to estimate the value function of a target policy based on the offline data collected by a behavior policy. We propose to incorporate the variance information of the value function to improve the sample efficiency of OPE. More specifically, for time-inhomogeneous episodic linear Markov decision processes (MDPs), we propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration. We show that our algorithm achieves a tighter error bound than the best-known result. We also provide a fine-grained characterization of the distribution shift between the behavior policy and the target policy. Extensive numerical experiments corroborate our theory.
We study reinforcement learning (RL) with linear function approximation. Existing algorithms for this problem only have high-probability regret and/or Probably Approximately Correct (PAC) sample complexity guarantees, which cannot guarantee the convergence to the optimal policy. In this paper, in order to overcome the limitation of existing algorithms, we propose a new algorithm called FLUTE, which enjoys uniform-PAC convergence to the optimal policy with high probability. The uniform-PAC guarantee is the strongest possible guarantee for reinforcement learning in the literature, which can directly imply both PAC and high probability regret bounds, making our algorithm superior to all existing algorithms with linear function approximation. At the core of our algorithm is a novel minimax value function estimator and a multi-level partition scheme to select the training samples from historical observations. Both of these techniques are new and of independent interest.
We study the reinforcement learning for finite-horizon episodic Markov decision processes with adversarial reward and full information feedback, where the unknown transition probability function is a linear function of a given feature mapping. We propose an optimistic policy optimization algorithm with Bernstein bonus and show that it can achieve $tilde{O}(dHsqrt{T})$ regret, where $H$ is the length of the episode, $T$ is the number of interaction with the MDP and $d$ is the dimension of the feature mapping. Furthermore, we also prove a matching lower bound of $tilde{Omega}(dHsqrt{T})$ up to logarithmic factors. To the best of our knowledge, this is the first computationally efficient, nearly minimax optimal algorithm for adversarial Markov decision processes with linear function approximation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا