Do you want to publish a course? Click here

Logarithmic Regret for Reinforcement Learning with Linear Function Approximation

94   0   0.0 ( 0 )
 Added by Quanquan Gu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Reinforcement learning (RL) with linear function approximation has received increasing attention recently. However, existing work has focused on obtaining $sqrt{T}$-type regret bound, where $T$ is the number of interactions with the MDP. In this paper, we show that logarithmic regret is attainable under two recently proposed linear MDP assumptions provided that there exists a positive sub-optimality gap for the optimal action-value function. More specifically, under the linear MDP assumption (Jin et al. 2019), the LSVI-UCB algorithm can achieve $tilde{O}(d^{3}H^5/text{gap}_{text{min}}cdot log(T))$ regret; and under the linear mixture MDP assumption (Ayoub et al. 2020), the UCRL-VTR algorithm can achieve $tilde{O}(d^{2}H^5/text{gap}_{text{min}}cdot log^3(T))$ regret, where $d$ is the dimension of feature mapping, $H$ is the length of episode, $text{gap}_{text{min}}$ is the minimal sub-optimality gap, and $tilde O$ hides all logarithmic terms except $log(T)$. To the best of our knowledge, these are the first logarithmic regret bounds for RL with linear function approximation. We also establish gap-dependent lower bounds for the two linear MDP models.



rate research

Read More

We study the reinforcement learning for finite-horizon episodic Markov decision processes with adversarial reward and full information feedback, where the unknown transition probability function is a linear function of a given feature mapping. We propose an optimistic policy optimization algorithm with Bernstein bonus and show that it can achieve $tilde{O}(dHsqrt{T})$ regret, where $H$ is the length of the episode, $T$ is the number of interaction with the MDP and $d$ is the dimension of the feature mapping. Furthermore, we also prove a matching lower bound of $tilde{Omega}(dHsqrt{T})$ up to logarithmic factors. To the best of our knowledge, this is the first computationally efficient, nearly minimax optimal algorithm for adversarial Markov decision processes with linear function approximation.
We study reinforcement learning (RL) with linear function approximation. Existing algorithms for this problem only have high-probability regret and/or Probably Approximately Correct (PAC) sample complexity guarantees, which cannot guarantee the convergence to the optimal policy. In this paper, in order to overcome the limitation of existing algorithms, we propose a new algorithm called FLUTE, which enjoys uniform-PAC convergence to the optimal policy with high probability. The uniform-PAC guarantee is the strongest possible guarantee for reinforcement learning in the literature, which can directly imply both PAC and high probability regret bounds, making our algorithm superior to all existing algorithms with linear function approximation. At the core of our algorithm is a novel minimax value function estimator and a multi-level partition scheme to select the training samples from historical observations. Both of these techniques are new and of independent interest.
We study reinforcement learning in an infinite-horizon average-reward setting with linear function approximation, where the transition probability function of the underlying Markov Decision Process (MDP) admits a linear form over a feature mapping of the current state, action, and next state. We propose a new algorithm UCRL2-VTR, which can be seen as an extension of the UCRL2 algorithm with linear function approximation. We show that UCRL2-VTR with Bernstein-type bonus can achieve a regret of $tilde{O}(dsqrt{DT})$, where $d$ is the dimension of the feature mapping, $T$ is the horizon, and $sqrt{D}$ is the diameter of the MDP. We also prove a matching lower bound $tilde{Omega}(dsqrt{DT})$, which suggests that the proposed UCRL2-VTR is minimax optimal up to logarithmic factors. To the best of our knowledge, our algorithm is the first nearly minimax optimal RL algorithm with function approximation in the infinite-horizon average-reward setting.
We study reinforcement learning (RL) with linear function approximation under the adaptivity constraint. We consider two popular limited adaptivity models: batch learning model and rare policy switch model, and propose two efficient online RL algorithms for linear Markov decision processes. In specific, for the batch learning model, our proposed LSVI-UCB-Batch algorithm achieves an $tilde O(sqrt{d^3H^3T} + dHT/B)$ regret, where $d$ is the dimension of the feature mapping, $H$ is the episode length, $T$ is the number of interactions and $B$ is the number of batches. Our result suggests that it suffices to use only $sqrt{T/dH}$ batches to obtain $tilde O(sqrt{d^3H^3T})$ regret. For the rare policy switch model, our proposed LSVI-UCB-RareSwitch algorithm enjoys an $tilde O(sqrt{d^3H^3T[1+T/(dH)]^{dH/B}})$ regret, which implies that $dHlog T$ policy switches suffice to obtain the $tilde O(sqrt{d^3H^3T})$ regret. Our algorithms achieve the same regret as the LSVI-UCB algorithm (Jin et al., 2019), yet with a substantially smaller amount of adaptivity.
Despite many algorithmic advances, our theoretical understanding of practical distributional reinforcement learning methods remains limited. One exception is Rowland et al. (2018)s analysis of the C51 algorithm in terms of the Cramer distance, but their results only apply to the tabular setting and ignore C51s use of a softmax to produce normalized distributions. In this paper we adapt the Cramer distance to deal with arbitrary vectors. From it we derive a new distributional algorithm which is fully Cramer-based and can be combined to linear function approximation, with formal guarantees in the context of policy evaluation. In allowing the models prediction to be any real vector, we lose the probabilistic interpretation behind the method, but otherwise maintain the appealing properties of distributional approaches. To the best of our knowledge, ours is the first proof of convergence of a distributional algorithm combined with function approximation. Perhaps surprisingly, our results provide evidence that Cramer-based distributional methods may perform worse than directly approximating the value function.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا