Do you want to publish a course? Click here

Unidirectional magneto-transport of linearly dispersing topological edge states

168   0   0.0 ( 0 )
 Added by Pankaj Bhalla
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum spin-Hall edges are envisaged as next-generation transistors, yet they exhibit dissipationless transport only over short distances. Here we show that in a diffusive sample, where charge puddles with odd spin cause back-scattering, a magnetic field drastically increases the mean free path and drives the system into the ballistic regime with a Landauer-Buttiker conductance. A strong non-linear non-reciprocal current emerges in the diffusive regime with opposite signs on each edge, and vanishes in the ballistic limit. We discuss its detection in state-of-the-art experiments.



rate research

Read More

The non-Hermitian skin effect (NHSE) in non-Hermitian lattice systems depicts the exponential localization of eigenstates at systems boundaries. It has led to a number of counter-intuitive phenomena and challenged our understanding of bulk-boundary correspondence in topological systems. This work aims to investigate how the NHSE localization and topological localization of in-gap edge states compete with each other, with several representative static and periodically driven 1D models, whose topological properties are protected by different symmetries. The emerging insight is that at critical system parameters, even topologically protected edge states can be perfectly delocalized. In particular, it is discovered that this intriguing delocalization occurs if the real spectrum of the systems edge states falls on the same systems complex spectral loop obtained under the periodic boundary condition. We have also performed sample numerical simulation to show that such delocalized topological edge states can be safely reconstructed from time-evolving states. Possible applications of delocalized topological edge states are also briefly discussed.
We use the bulk Hamiltonian for a three-dimensional topological insulator such as $rm Bi_2 Se_3$ to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Hamiltonians (which are derived from the bulk Hamiltonian) and numerical methods based on a lattice discretization of the bulk Hamiltonian. We find that the application of a potential along an edge can give rise to states localized at that edge. These states have an unusual energy-momentum dispersion which can be controlled by applying a potential along the edge; in particular, the velocity of these states can be tuned to zero. The scattering across the edge is studied as a function of the edge potential. We show that a magnetic field in a particular direction can also give rise to zero energy states on certain edges. We point out possible experimental ways of looking for the various edge states.
94 - Hao Hu , Song Han , Yihao Yang 2021
The topological band theory predicts that bulk materials with nontrivial topological phases support topological edge states. This phenomenon is universal for various wave systems and has been widely observed for electromagnetic and acoustic waves. Here, we extend the notion of band topology from wave to diffusion dynamics. Unlike the wave systems that are usually Hermitian, the diffusion systems are anti-Hermitian with purely imaginary eigenvalues corresponding to decay rates. Via direct probe of the temperature diffusion, we experimentally retrieve the Hamiltonian of a thermal lattice, and observe the emergence of topological edge decays within the gap of bulk decays. Our results show that such edge states exhibit robust decay rates, which are topologically protected against disorders. This work constitutes a thermal analogue of topological insulators and paves the way to exploring defect-immune heat dissipation.
70 - Zhida Song , Zhong Fang , 2017
We study fourfold rotation invariant gapped topological systems with time-reversal symmetry in two and three dimensions ($d=2,3$). We show that in both cases nontrivial topology is manifested by the presence of the $(d-2)$-dimensional edge states, existing at a point in 2D or along a line in 3D. For fermion systems without interaction, the bulk topological invariants are given in terms of the Wannier centers of filled bands, and can be readily calculated using a Fu-Kane-like formula when inversion symmetry is also present. The theory is extended to strongly interacting systems through explicit construction of microscopic models having robust $(d-2)$-dimensional edge states.
The bulk-edge correspondence (BEC) refers to a one-to-one relation between the bulk and edge properties ubiquitous in topologically nontrivial systems. Depending on the setup, BEC manifests in different forms and govern the spectral and transport properties of topological insulators and semimetals. Although the topological pump is theoretically old, BEC in the pump has been established just recently [1] motivated by the state-of-the-art experiments using cold atoms [2,3]. The center of mass (CM) of a system with boundaries shows a sequence of quantized jumps in the adiabatic limit associated with the edge states. Although the bulk is adiabatic, the edge is inevitably non-adiabatic in the experimental setup or in any numerical simulations. Still the pumped charge is quantized and carried by the bulk. Its quantization is guaranteed by a compensation between the bulk and edges. We show that in the presence of disorder the pumped charge continues to be quantized despite the appearance of non-quantized jumps.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا