Do you want to publish a course? Click here

Event-Triggered State Estimation with Multiple Noisy Sensor Nodes

83   0   0.0 ( 0 )
 Added by Koen Scheres
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

General nonlinear continuous-time systems are considered for which the state is to be estimated via a packet-based communication network. We assume that the system has multiple sensor nodes, affected by measurement noise, which can transmit output data at discrete (non-equidistant) and asynchronous points in time. For this general system setup, we develop a state estimation framework, where the transmission instances of the individual sensor nodes can be generated in both time-triggered and event-triggered fashions. In the latter case, we guarantee the absence of Zeno behavior by construction. It is shown that, under the provided design conditions, an input-to-state stability property is obtained for the estimation error and that the state is thus reconstructed asymptotically in the absence of noise. A numerical case study shows the strengths of the developed framework.



rate research

Read More

142 - Xingkang He , Yu Xing , Junfeng Wu 2021
We study distributed estimation of a high-dimensional static parameter vector through a group of sensors whose communication network is modeled by a fixed directed graph. Different from existing time-triggered communication schemes, an event-triggered asynchronous scheme is investigated in order to reduce communication while preserving estimation convergence. A distributed estimation algorithm with a single step size is first proposed based on an event-triggered communication scheme with a time-dependent decaying threshold. With the event-triggered scheme, each sensor sends its estimate to neighbor sensors only when the difference between the current estimate and the last sent-out estimate is larger than the triggering threshold. We prove that the proposed algorithm has mean-square and almost-sure convergence respectively, under an integrated condition of sensor network topology and sensor measurement matrices. The condition is satisfied if the topology is a balanced digraph containing a spanning tree and the system is collectively observable. Moreover, we provide estimates for the convergence rates, which are related to the step size as well as the triggering threshold. Furthermore, as an essential metric of sensor communication intensity in the event-triggered distributed algorithms, the communication rate is proved to decay to zero with a certain speed almost surely as time goes to infinity. We show that given the step size, adjusting the decay speed of the triggering threshold can lead to a tradeoff between the convergence rate of the estimation error and the decay speed of the communication rate. Specifically, increasing the decay speed of the threshold would make the communication rate decay faster, but reduce the convergence rate of the estimation error. Numerical simulations are provided to illustrate the developed results.
We consider the problem of communication allocation for remote state estimation in a cognitive radio sensor network~(CRSN). A sensor collects measurements of a physical plant, and transmits the data to a remote estimator as a secondary user (SU) in the shared network. The existence of the primal users (PUs) brings exogenous uncertainties into the transmission scheduling process, and how to design an event-based scheduling scheme considering these uncertainties has not been addressed in the literature. In this work, we start from the formulation of a discrete-time remote estimation process in the CRSN, and then analyze the hidden information contained in the absence of data transmission. In order to achieve a better tradeoff between estimation performance and communication consumption, we propose both open-loop and closed-loop schedules using the hidden information under a Bayesian setting. The open-loop schedule does not rely on any feedback signal but only works for stable plants. For unstable plants, a closed-loop schedule is designed based on feedback signals. The parameter design problems in both schedules are efficiently solved by convex programming. Numerical simulations are included to illustrate the theoretical results.
We consider a remote state estimation problem in the presence of an eavesdropper over packet dropping links. A smart sensor transmits its local estimates to a legitimate remote estimator, in the course of which an eavesdropper can randomly overhear the transmission. This problem has been well studied for unstable dynamical systems, but seldom for stable systems. In this paper, we target at stable and marginally stable systems and aim to design an event-triggered scheduling strategy by minimizing the expected error covariance at the remote estimator and keeping that at the eavesdropper above a user-specified lower bound. To this end, we model the evolution of the error covariance as an infinite recurrent Markov chain and develop a recurrence relation to describe the stationary distribution of the state at the eavesdropper. Monotonicity and convergence properties of the expected error covariance are further investigated and employed to solve the optimization problem. Numerical examples are provided to validate the theoretical results.
In autonomous applications for mobility and transport, a high-rate and highly accurate vehicle states estimation is achieved by fusing measurements of global navigation satellite systems and inertial sensors. Since this kind of state estimation suffers from poor parameterization, environment disturbances, or even software and hardware failures, this paper introduces a novel scheme of multi-sensor navigation system involving extended H$_infty$ filter for robustness enhancement of the navigation solution and zonotope for protection level generation in combination with vehicle dynamic-model-aided fault detection of the inertial sensor for reliable integrity monitoring. The innovative scheme, applying extended H$_infty$ filter and zonotope, is shown as part of a tightly-coupled navigation system. Further, the consideration of redundant information, e.g., vehicle dynamic model, for fault detection purpose has long been investigated and is systematically described and discussed using interval analysis theory in current publication. The robustness of the designed approach is validated with real-world data in post-processing: decimeter positioning accuracy is maintained, while the solution of conventional extended Kalman filter diverges from ground truth; the difference is also significant under inertial sensor faults. A real-time implementation of the designed approach is promising and aimed in the future work.
We study the distributed average consensus problem in multi-agent systems with directed communication links that are subject to quantized information flow. The goal of distributed average consensus is for the nodes, each associated with some initial value, to obtain the average (or some value close to the average) of these initial values. In this paper, we present and analyze novel distributed averaging algorithms which operate exclusively on quantized values (specifically, the information stored, processed and exchanged between neighboring agents is subject to deterministic uniform quantization) and rely on event-driven updates (e.g., to reduce energy consumption, communication bandwidth, network congestion, and/or processor usage). We characterize the properties of the proposed distributed averaging protocols on quantized values and show that their execution, on any time-invariant and strongly connected digraph, will allow all agents to reach, in finite time, a common consensus value represented as the ratio of two quantized values that is equal to the exact average. We conclude with examples that illustrate the operation, performance, and potential advantages of the proposed algorithms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا