Do you want to publish a course? Click here

Reproducible Performance Optimization of Complex Applications on the Edge-to-Cloud Continuum

158   0   0.0 ( 0 )
 Added by Daniel Rosendo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In more and more application areas, we are witnessing the emergence of complex workflows that combine computing, analytics and learning. They often require a hybrid execution infrastructure with IoT devices interconnected to cloud/HPC systems (aka Computing Continuum). Such workflows are subject to complex constraints and requirements in terms of performance, resource usage, energy consumption and financial costs. This makes it challenging to optimize their configuration and deployment. We propose a methodology to support the optimization of real-life applications on the Edge-to-Cloud Continuum. We implement it as an extension of E2Clab, a previously proposed framework supporting the complete experimental cycle across the Edge-to-Cloud Continuum. Our approach relies on a rigorous analysis of possible configurations in a controlled testbed environment to understand their behaviour and related performance trade-offs. We illustrate our methodology by optimizing Pl@ntNet, a world-wide plant identification application. Our methodology can be generalized to other applications in the Edge-to-Cloud Continuum.



rate research

Read More

Distributed digital infrastructures for computation and analytics are now evolving towards an interconnected ecosystem allowing complex applications to be executed from IoT Edge devices to the HPC Cloud (aka the Computing Continuum, the Digital Continuum, or the Transcontinuum). Understanding end-to-end performance in such a complex continuum is challenging. This breaks down to reconciling many, typically contradicting application requirements and constraints with low-level infrastructure design choices. One important challenge is to accurately reproduce relevant behaviors of a given application workflow and representative settings of the physical infrastructure underlying this complex continuum. We introduce a rigorous methodology for such a process and validate it through E2Clab. It is the first platform to support the complete experimental cycle across the Computing Continuum: deployment, analysis, optimization. Preliminary results with real-life use cases show that E2Clab allows one to understand and improve performance, by correlating it to the parameter settings, the resource usage and the specifics of the underlying infrastructure.
Person re-identification (ReID) aims to re-identify a person from non-overlapping camera views. Since person ReID data contains sensitive personal information, researchers have adopted federated learning, an emerging distributed training method, to mitigate the privacy leakage risks. However, existing studies rely on data labels that are laborious and time-consuming to obtain. We present FedUReID, a federated unsupervised person ReID system to learn person ReID models without any labels while preserving privacy. FedUReID enables in-situ model training on edges with unlabeled data. A cloud server aggregates models from edges instead of centralizing raw data to preserve data privacy. Moreover, to tackle the problem that edges vary in data volumes and distributions, we personalize training in edges with joint optimization of cloud and edge. Specifically, we propose personalized epoch to reassign computation throughout training, personalized clustering to iteratively predict suitable labels for unlabeled data, and personalized update to adapt the server aggregated model to each edge. Extensive experiments on eight person ReID datasets demonstrate that FedUReID not only achieves higher accuracy but also reduces computation cost by 29%. Our FedUReID system with the joint optimization will shed light on implementing federated learning to more multimedia tasks without data labels.
Big data applications and analytics are employed in many sectors for a variety of goals: improving customers satisfaction, predicting market behavior or improving processes in public health. These applications consist of complex software stacks that are often run on cloud systems. Predicting execution times is important for estimating the cost of cloud services and for effectively managing the underlying resources at runtime. Machine Learning (ML), providing black box solutions to model the relationship between application performance and system configuration without requiring in-detail knowledge of the system, has become a popular way of predicting the performance of big data applications. We investigate the cost-benefits of using supervised ML models for predicting the performance of applications on Spark, one of todays most widely used frameworks for big data analysis. We compare our approach with textit{Ernest} (an ML-based technique proposed in the literature by the Spark inventors) on a range of scenarios, application workloads, and cloud system configurations. Our experiments show that Ernest can accurately estimate the performance of very regular applications, but it fails when applications exhibit more irregular patterns and/or when extrapolating on bigger data set sizes. Results show that our models match or exceed Ernests performance, sometimes enabling us to reduce the prediction error from 126-187% to only 5-19%.
In Wolke et al. [1] we compare the efficiency of different resource allocation strategies experimentally. We focused on dynamic environments where virtual machines need to be allocated and deallocated to servers over time. In this companion paper, we describe the simulation framework and how to run simulations to replicate experiments or run new experiments within the framework.
Partitioning and distributing deep neural networks (DNNs) across end-devices, edge resources and the cloud has a potential twofold advantage: preserving privacy of the input data, and reducing the ingress bandwidth demand beyond the edge. However, for a given DNN, identifying the optimal partition configuration for distributing the DNN that maximizes performance is a significant challenge. This is because the combination of potential target hardware resources that maximizes performance and the sequence of layers of the DNN that should be distributed across the target resources needs to be determined, while accounting for user-defined objectives/constraints for partitioning. This paper presents Scission, a tool for automated benchmarking of DNNs on a given set of target device, edge and cloud resources for determining optimal partitions that maximize DNN performance. The decision-making approach is context-aware by capitalizing on hardware capabilities of the target resources, their locality, the characteristics of DNN layers, and the network condition. Experimental studies are carried out on 18 DNNs. The decisions made by Scission cannot be manually made by a human given the complexity and the number of dimensions affecting the search space. The benchmarking overheads of Scission allow for responding to operational changes periodically rather than in real-time. Scission is available for public download at https://github.com/qub-blesson/Scission.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا