No Arabic abstract
In this study, a shape optimization problem for the two-dimensional stationary Navier--Stokes equations with an artificial boundary condition is considered. The fluid is assumed to be flowing through a rectangular channel, and the artificial boundary condition is formulated so as to take into account the possibility of ill-posedness caused by the usual do-nothing boundary condition. The goal of the optimization problem is to maximize the vorticity of the said fluid by determining the shape of an obstacle inside the channel. Meanwhile, the shape variation is limited by a perimeter functional and a volume constraint. The perimeter functional was considered to act as a Tikhonov regularizer and the volume constraint is added to exempt us from topological changes in the domain. The shape derivative of the objective functional was formulated using the rearrangement method, and this derivative was later on used for gradient descent methods. Additionally, an augmented Lagrangian method and a class of solenoidal deformation fields were considered to take into account the goal of volume preservation. Lastly, numerical examples based on the gradient descent and the volume preservation methods are presented.
We introduce and analyze a space-time least-squares method associated to the unsteady Navier-Stokes system. Weak solution in the two dimensional case and regular solution in the three dimensional case are considered. From any initial guess, we construct a minimizing sequence for the least-squares functional which converges strongly to a solution of the Navier-Stokes system. After a finite number of iterates related to the value of the viscosity constant, the convergence is quadratic. Numerical experiments within the two dimensional case support our analysis. This globally convergent least-squares approach is related to the damped Newton method when used to solve the Navier-Stokes system through a variational formulation.
This paper constructs and analyzes a boundary correction finite element method for the Stokes problem based on the Scott-Vogelius pair on Clough-Tocher splits. The velocity space consists of continuous piecewise quadratic polynomials, and the pressure space consists of piecewise linear polynomials without continuity constraints. A Lagrange multiplier space that consists of continuous piecewise quadratic polynomials with respect to boundary partition is introduced to enforce boundary conditions as well as to mitigate the lack of pressure-robustness. We prove several inf-sup conditions, leading to the well-posedness of the method. In addition, we show that the method converges with optimal order and the velocity approximation is divergence free.
We investigate the behaviour of a system where a single phase fluid domain is coupled to a biphasic poroelastic domain. The fluid domain consists of an incompressible Newtonian viscous fluid while the poroelastic domain consists of a linear elastic solid filled with the same viscous fluid. The properties of the poroelastic domain, i.e. permeability and elastic parameters, depend on the inhomogeneous initial porosity field. The theoretical framework highlights how the heterogeneous material properties enter the linearised governing equations for the poroelastic domain. To couple flows through this domain with a surrounding Stokes flow, we show case a numerical implementation based on a new mixed formulation where the equations in the poroelastic domain are rewritten in terms of three fields: displacement, fluid pressure and total pressure. Coupling single phase and multiphase flow problems are ubiquitous in many industrial and biological applications, and here we consider an example from in-vitro tissue engineering. We consider a perfusion system, where a flow is forced to pass from the single phase fluid to the biphasic poroelastic domain. We focus on a simplified two dimensional geometry with small aspect ratio, and perform an asymptotic analysis to derive analytical solutions for the displacement, the pressure and the velocity fields. Our analysis advances the quantitative understanding of the role of heterogeneous material properties of a poroelastic domain on its mechanics when coupled with a fluid domain. Specifically, (i) the analytical analysis gives closed form relations that can be directly used in the design of slender perfusion systems; (ii) the numerical method is validated by comparing its result against selected theoretical solutions, opening towards the possibility to investigate more complex geometrical configurations.
We propose a time-implicit, finite-element based space-time discretization of the necessary and sufficient optimality conditions for the stochastic linear-quadratic optimal control problem with the stochastic heat equation driven by linear noise of type $[X(t)+sigma(t)]dW(t)$, and prove optimal convergence w.r.t. both, space and time discretization parameters. In particular, we employ the stochastic Riccati equation as a proper analytical tool to handle the linear noise, and thus extend the applicability of the earlier work [16], where the error analysis was restricted to additive noise.
We present an energy-stable scheme for simulating the incompressible Navier-Stokes equations based on the generalized Positive Auxiliary Variable (gPAV) framework. In the gPAV-reformulated system the original nonlinear term is replaced by a linear term plus a correction term, where the correction term is put under control by an auxiliary variable. The proposed scheme incorporates a pressure-correction type strategy into the gPAV procedure, and it satisfies a discrete energy stability property. The scheme entails the computation of two copies of the velocity and pressure within a time step, by solving an individual de-coupled linear equation for each of these field variables. Upon discretization the pressure linear system involves a constant coefficient matrix that can be pre-computed, while the velocity linear system involves a coefficient matrix that is updated periodically, once every $k_0$ time steps in the current work, where $k_0$ is a user-specified integer. The auxiliary variable, being a scalar-valued number, is computed by a well-defined explicit formula, which guarantees the positivity of its computed values. It is observed that the current method can produce accurate simulation results at large (or fairly large) time step sizes for the incompressible Navier-Stokes equations. The impact of the periodic coefficient-matrix update on the overall cost of the method is observed to be small in typical numerical simulations. Several flow problems have been simulated to demonstrate the accuracy and performance of the method developed herein.